Исследование по теме: Квадратные уравнения

Материал из ТолВИКИ
(Различия между версиями)
Перейти к: навигация, поиск
 
(не показаны 44 промежуточные версии 1 участника)
Строка 2: Строка 2:
  
 
==Тема исследования==
 
==Тема исследования==
'''''Сколько способов решения квадратных уравнений?'''''
+
'''''Сколько способов решения квадратных уравнений существует?'''''
  
 
==Актуальность проблемы==
 
==Актуальность проблемы==
''В математике очень часто встречаются задания и текстовые задачи, решение которых сводится к решению квадратных уравнений.  
+
''В математике очень часто встречаются задания и текстовые задачи, решение которых сводится к решению квадратных уравнений.
 +
 
''Способы решения таких заданий могут быть различными - это и применение формул, и графическое решение.''
 
''Способы решения таких заданий могут быть различными - это и применение формул, и графическое решение.''
''Поэтому для каждой задачи важно выбрать "свой" способ решения, чтобы оно было рациональным, красивым.'''
+
 
 +
''Поэтому для каждой задачи важно выбрать "свой" способ решения, чтобы оно было рациональным, красивым.''
  
 
==Цель==
 
==Цель==
 +
''Выяснить, есть ли способы решения квадратных уравнений, не изучаемые в программе по математике 8 класса.''
  
 
==Задачи==
 
==Задачи==
 +
''1. Узнать, почему возникли квадратные уравнения?''
  
==Гипотеза==
+
''2. Выяснить, где, как и кем применялись способы решения квадратных уравнений?''
  
 +
''3. Выяснить, можно ли старинную задачу решить современным способом?''
 +
 +
''4. Выяснить, всякий ли корень может быть решением квадратного уравнения?''
 +
 +
==Гипотеза==
 +
''В курс математики 8 класса мы узнаем все способы решения квадратных уравнений.''
  
 
==Этапы исследования==
 
==Этапы исследования==
 +
''1.Подготовительный этап (1 неделя ).
  
 +
''Постановка целей и задач, разработка плана исследования, подготовка необходимых материалов. ''
  
 +
''2.Основной этап ( 10 дней ).
  
==Объект исследования==
+
''Постановка цели исследования, распределение ролей в группах, выдвижение гипотезы, поиск путей решения, поиск информации, исследовательская деятельность, оформление результатов.''
+
  
 +
''3.Заключительный этап ( 2 дня ).
  
 +
''Ученическая конференция (защита проекта, представление отчетных работ).''
  
==Методы==
+
==Объект исследования==
 +
''Квадратные уравнения.''
  
 +
''Способы решения квадратных уравнений.''
  
 +
==Методы==
 +
''Работа с дополнительной литературой, анализ, синтез, выдвижение и подтверждение гипотез или их отрицание.''
  
 
==Ход работы==
 
==Ход работы==
 +
''Тема нашего исследования "Сколько способов решения квадратных уравнений существует и все ли способы решения мы изучаем в курсе математики 8 класса"? Мы разбились на две группы, одна пошла в библиотеку, а другая стала изучать странички интернета. Тем ребятам, которые работали в библиотеке пришлось гораздо сложнее, они "перерыли" кучу книг, а вот тем кто работал с интернетом - гораздо проще, нужную информацию они нашли гораздо быстрее. На это ушла неделя, затем мы устроили конференцию, сделали выводы: основные способы решения квадратных уравнений мы изучаем в курсе 8 класса, все остальные способы являются производными.''
  
 
+
== Наши результаты ==
 
+
''Найденные древние вавилонские глиняные таблички, датированные где-то между 1800 и 1600 годами до н.э., являются самыми ранними свидетельствами об изучении квадратных уравнений.'' ''На этих же табличках изложены методы решения некоторых типов квадратных уравнений.
==Наши результаты==
+
''Древнеиндийский математик Баудхаяма в VIII столетии до н.э. впервые использовал квадратные уравнения в форме ax2 = c и ax2 + bx = c и привел методы их решения.''  ''Вавилонские математики примерно с IV века до н.э. и китайские математики примерно со II века до н.э. использовали метод дополнения квадрата для решения уравнений с положительными корнями.''  ''Около 300 года до н.э. Эвклид придумал более общий геометрический метод решения.'' ''Первым математиком, который нашел решения уравнения с отрицательными корнями в виде алгебраической формулы, был Брахмагупта (Индия, VII столетие нашей эры).'' ''Формулы решения квадратных уравнений в Европе были впервые  изложены в 1202 г. итальянским математиком Леонардом Фибоначчи. '' ''Общее правило решения квадратных уравнений, приведенных к единому каноническому виду х2+вх+с=0 , было сформулировано в Европе лишь в 1544 г. Штифелем.
 +
''Вывод формулы решения квадратного уравнения  в общем виде имеется у Виета, однако Виет признавал только положительные корни. Лишь в 17 в. благодаря трудам Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.''''
  
 
==Выводы==
 
==Выводы==
* ...
+
''В результате исследований мы сделали выводы: в курсе математики 8 класса мы изучаем все способы решения квадратных уравнений, все остальные сводятся к ним.''
* ...
+
 
* ...
+
                             
+
 
==Список ресурсов==
 
==Список ресурсов==
 
'''Печатные издания:'''
 
'''Печатные издания:'''
* ...
 
* ...
 
* ...
 
  
 +
1.Занимательная алгебра. Занимательная геометрия / Перельман Я. И.-М.:ООО «Издательство АСТ», 2003 – 474, [6]с
 +
 +
2.400 самых интересных задач с решениями по школьному курсу математики для 6-11 класса. –М-ЮНВЕС.-1997-288с.
 +
 +
3.Нестандартные задания по математике: 5-11 классы: -М.: Издательство «Первое сентября», 2003.- 224с.: ил.
  
  
 
'''Интернет - ресурсы:'''
 
'''Интернет - ресурсы:'''
* ...
+
 
* ...
+
1) http//tgl.net.ru
* ...
+
 
 +
2) http//wwwbing.com
 +
 
 +
 
  
 
[[Категория:Математика]]
 
[[Категория:Математика]]

Текущая версия на 18:58, 8 октября 2011


Содержание

Тема исследования

Сколько способов решения квадратных уравнений существует?

Актуальность проблемы

В математике очень часто встречаются задания и текстовые задачи, решение которых сводится к решению квадратных уравнений.

Способы решения таких заданий могут быть различными - это и применение формул, и графическое решение.

Поэтому для каждой задачи важно выбрать "свой" способ решения, чтобы оно было рациональным, красивым.

Цель

Выяснить, есть ли способы решения квадратных уравнений, не изучаемые в программе по математике 8 класса.

Задачи

1. Узнать, почему возникли квадратные уравнения?

2. Выяснить, где, как и кем применялись способы решения квадратных уравнений?

3. Выяснить, можно ли старинную задачу решить современным способом?

4. Выяснить, всякий ли корень может быть решением квадратного уравнения?

Гипотеза

В курс математики 8 класса мы узнаем все способы решения квадратных уравнений.

Этапы исследования

1.Подготовительный этап (1 неделя ).

Постановка целей и задач, разработка плана исследования, подготовка необходимых материалов.

2.Основной этап ( 10 дней ).

Постановка цели исследования, распределение ролей в группах, выдвижение гипотезы, поиск путей решения, поиск информации, исследовательская деятельность, оформление результатов.

3.Заключительный этап ( 2 дня ).

Ученическая конференция (защита проекта, представление отчетных работ).

Объект исследования

Квадратные уравнения.

Способы решения квадратных уравнений.

Методы

Работа с дополнительной литературой, анализ, синтез, выдвижение и подтверждение гипотез или их отрицание.

Ход работы

Тема нашего исследования "Сколько способов решения квадратных уравнений существует и все ли способы решения мы изучаем в курсе математики 8 класса"? Мы разбились на две группы, одна пошла в библиотеку, а другая стала изучать странички интернета. Тем ребятам, которые работали в библиотеке пришлось гораздо сложнее, они "перерыли" кучу книг, а вот тем кто работал с интернетом - гораздо проще, нужную информацию они нашли гораздо быстрее. На это ушла неделя, затем мы устроили конференцию, сделали выводы: основные способы решения квадратных уравнений мы изучаем в курсе 8 класса, все остальные способы являются производными.

Наши результаты

Найденные древние вавилонские глиняные таблички, датированные где-то между 1800 и 1600 годами до н.э., являются самыми ранними свидетельствами об изучении квадратных уравнений. На этих же табличках изложены методы решения некоторых типов квадратных уравнений. Древнеиндийский математик Баудхаяма в VIII столетии до н.э. впервые использовал квадратные уравнения в форме ax2 = c и ax2 + bx = c и привел методы их решения. Вавилонские математики примерно с IV века до н.э. и китайские математики примерно со II века до н.э. использовали метод дополнения квадрата для решения уравнений с положительными корнями. Около 300 года до н.э. Эвклид придумал более общий геометрический метод решения. Первым математиком, который нашел решения уравнения с отрицательными корнями в виде алгебраической формулы, был Брахмагупта (Индия, VII столетие нашей эры). Формулы решения квадратных уравнений в Европе были впервые изложены в 1202 г. итальянским математиком Леонардом Фибоначчи. Общее правило решения квадратных уравнений, приведенных к единому каноническому виду х2+вх+с=0 , было сформулировано в Европе лишь в 1544 г. Штифелем. Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Лишь в 17 в. благодаря трудам Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.''

Выводы

В результате исследований мы сделали выводы: в курсе математики 8 класса мы изучаем все способы решения квадратных уравнений, все остальные сводятся к ним.

Список ресурсов

Печатные издания:

1.Занимательная алгебра. Занимательная геометрия / Перельман Я. И.-М.:ООО «Издательство АСТ», 2003 – 474, [6]с

2.400 самых интересных задач с решениями по школьному курсу математики для 6-11 класса. –М-ЮНВЕС.-1997-288с.

3.Нестандартные задания по математике: 5-11 классы: -М.: Издательство «Первое сентября», 2003.- 224с.: ил.


Интернет - ресурсы:

1) http//tgl.net.ru

2) http//wwwbing.com

Личные инструменты
наши друзья
http://аудиохрестоматия.рф/