Семинар ДООМ "Примеры задач на построение"
(Новая: Участник:Князева Наталья Николаевна команда Диофанты ID_073 '''Урок по геометрии: «Примеры задач на по...) |
|||
Строка 1: | Строка 1: | ||
− | + | Участник:Князева Наталья Николаевна команда Диофанты ID_073 | |
'''Урок по геометрии: «Примеры задач на построение»''' | '''Урок по геометрии: «Примеры задач на построение»''' | ||
Строка 9: | Строка 9: | ||
'''Цель урока:''' | '''Цель урока:''' | ||
− | + | * образовательные: ученик должен знать: | |
− | + | – определение окружности, центра окружности, радиуса; | |
<br>– определение середины отрезка; | <br>– определение середины отрезка; | ||
<br>– определение перпендикулярных прямых; | <br>– определение перпендикулярных прямых; | ||
Строка 17: | Строка 17: | ||
<br>– анализировать условие задачи; | <br>– анализировать условие задачи; | ||
<br>– составлять план построения. | <br>– составлять план построения. | ||
− | + | * развивающие: – развитие памяти учащихся; | |
− | + | – развитие внимательности; | |
<br>– развитие познавательного интереса к геометрии; | <br>– развитие познавательного интереса к геометрии; | ||
<br>– развитие умений организации учебного труда; | <br>– развитие умений организации учебного труда; | ||
<br>– формирование логического, абстрактного и системного мышления; | <br>– формирование логического, абстрактного и системного мышления; | ||
<br>– формирование мыслительных операций – анализа, доказательства, обобщения. | <br>– формирование мыслительных операций – анализа, доказательства, обобщения. | ||
− | + | * воспитательные: – способствовать поддержанию на высоком уровне общей работоспособности для учения; | |
− | + | – воспитание воли и настойчивости у учащихся для достижения конечных результатов; | |
<br>– воспитание рациональной организации времени; | <br>– воспитание рациональной организации времени; | ||
<br>– воспитание аккуратности, усидчивости. | <br>– воспитание аккуратности, усидчивости. | ||
− | + | '''Формы организации учебной деятельности:''' фронтальная, индивидуальная, групповая. | |
<br>'''Структура урока:''' | <br>'''Структура урока:''' | ||
#Организационный момент. | #Организационный момент. | ||
Строка 39: | Строка 39: | ||
''Оборудование:'' проектор,плакат «Схема решения задач на построение», циркуль, линейка без делений, презентация по теме «Простейшие задачи на построение», линейка с делениями, транспортир. | ''Оборудование:'' проектор,плакат «Схема решения задач на построение», циркуль, линейка без делений, презентация по теме «Простейшие задачи на построение», линейка с делениями, транспортир. | ||
− | '''Ход урока''' | + | <center>'''Ход урока'''</center> |
− | I. Организационный момент | + | |
+ | I. '''Организационный момент''' | ||
Сообщить тему урока и сформулировать цели урока. | Сообщить тему урока и сформулировать цели урока. | ||
− | II. Проверка домашнего задания | + | |
+ | II. '''Проверка домашнего задания''' | ||
Проверка домашнего задания: № 144, № 145, № 147. | Проверка домашнего задания: № 144, № 145, № 147. | ||
− | III. Всесторонняя проверка знаний. | + | |
+ | III. '''Всесторонняя проверка знаний.''' | ||
Теоретический опрос: «Дайте определение окружности», «Что такое центр, радиус, хорда и диаметр окружности» | Теоретический опрос: «Дайте определение окружности», «Что такое центр, радиус, хорда и диаметр окружности» | ||
− | IV. Подготовка учащихся к активному сознательному усвоению знаний. | + | |
− | Для подготовки учащихся к восприятию нового материала можно выполнить следующие упражнения: | + | IV. '''Подготовка учащихся к активному сознательному усвоению знаний.''' |
− | - Какой инструмент используется для того, чтобы начертить отрезок заданной длины? А угол заданной градусной меры? | + | <br>Для подготовки учащихся к восприятию нового материала можно выполнить следующие упражнения: |
+ | <br>- Какой инструмент используется для того, чтобы начертить отрезок заданной длины? А угол заданной градусной меры? | ||
Задания даются по одному на ряд, а затем заслушать учащихся. | Задания даются по одному на ряд, а затем заслушать учащихся. | ||
1) Начертите , такой что АВ = 3,6 см, АС = 2,7 см, . | 1) Начертите , такой что АВ = 3,6 см, АС = 2,7 см, . | ||
2) Начертите , такой что АВ = 4 см, . | 2) Начертите , такой что АВ = 4 см, . | ||
3) Начертите , такой что АВ = 5 см, ВС = 4 см, АС = 6 см. | 3) Начертите , такой что АВ = 5 см, ВС = 4 см, АС = 6 см. | ||
− | Эти задачи мы решали с помощью линейки с миллиметровыми делениями и транспортира. Но есть такие задачи, в которых бывает оговорено, с помощью каких инструментов нужно построить нужную геометрическую фигуру, например: «С помощью циркуля и линейки построить отрезок, равный данному». | + | <p align=justify>Эти задачи мы решали с помощью линейки с миллиметровыми делениями и транспортира. Но есть такие задачи, в которых бывает оговорено, с помощью каких инструментов нужно построить нужную геометрическую фигуру, например: «С помощью циркуля и линейки построить отрезок, равный данному». </p> |
+ | |||
Такие задачи мы будем называть задачами на построение. | Такие задачи мы будем называть задачами на построение. | ||
− | V. Усвоение новых знаний. | + | |
− | Задачи на построение – это такие задачи, при решении которых нужно построить геометрическую фигуру, удовлетворяющую условиям задачи, с помощью циркуля и линейки без делений. | + | V.''' Усвоение новых знаний.''' |
+ | <br>Задачи на построение – это такие задачи, при решении которых нужно построить геометрическую фигуру, удовлетворяющую условиям задачи, с помощью циркуля и линейки без делений. | ||
+ | |||
На доске плакат «Схема решения задач на построение»: | На доске плакат «Схема решения задач на построение»: | ||
− | + | #Анализ (рисунок искомой фигуры, устанавливающий связи между данными задачи и искомыми элементами, и план построения). | |
− | + | #Построение по намеченному плану. | |
− | + | #Доказательство, что данная фигура удовлетворяет условиям задачи. | |
− | + | #Исследование (при любых ли данных задача имеет решение, и если имеет, то сколько). | |
− | С помощью презентации учащиеся рассматривают задачи на построение: «Откладывание от данного луча угла, равного данному», «Построение биссектрисы данного угла» | + | <br>С помощью презентации учащиеся рассматривают задачи на построение: «Откладывание от данного луча угла, равного данному», «Построение биссектрисы данного угла» |
<p align=justify> Дальше можно разделить класс на группы, каждая из которых готовит одну из задач на построение по учебнику в течение 3-5 минут. Далее выходит представитель первой группы и решает на доске задачу, все остальные работают в тетрадях. Затем поочереди решаются остальные задачи.</p> | <p align=justify> Дальше можно разделить класс на группы, каждая из которых готовит одну из задач на построение по учебнику в течение 3-5 минут. Далее выходит представитель первой группы и решает на доске задачу, все остальные работают в тетрадях. Затем поочереди решаются остальные задачи.</p> | ||
1-я группа: «На данном луче от его начала отложить отрезок, равный данному» (§22) | 1-я группа: «На данном луче от его начала отложить отрезок, равный данному» (§22) |
Версия 19:52, 26 ноября 2009
Участник:Князева Наталья Николаевна команда Диофанты ID_073
Урок по геометрии: «Примеры задач на построение»
Класс: 7 класс
Учебник: Геометрия, 7-9: Учеб. для общеобразовательных учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.
Тип урока: комбинированный, усвоение умений и навыков.
Цель урока:
- образовательные: ученик должен знать:
– определение окружности, центра окружности, радиуса;
– определение середины отрезка;
– определение перпендикулярных прямых;
Ученик должен уметь:
– решать простейшие задачи на построение;
– анализировать условие задачи;
– составлять план построения.
- развивающие: – развитие памяти учащихся;
– развитие внимательности;
– развитие познавательного интереса к геометрии;
– развитие умений организации учебного труда;
– формирование логического, абстрактного и системного мышления;
– формирование мыслительных операций – анализа, доказательства, обобщения.
- воспитательные: – способствовать поддержанию на высоком уровне общей работоспособности для учения;
– воспитание воли и настойчивости у учащихся для достижения конечных результатов;
– воспитание рациональной организации времени;
– воспитание аккуратности, усидчивости.
Формы организации учебной деятельности: фронтальная, индивидуальная, групповая.
Структура урока:
- Организационный момент.
- Проверка домашнего задания.
- Всесторонняя проверка знаний.
- Подготовка учащихся к активному сознательному усвоению знаний.
- Усвоение новых знаний.
- Физкультминутка.
- Закрепление новых знаний.
- Подведение итогов урока. Домашнее задание и инструктаж по его выполнению.
Оборудование: проектор,плакат «Схема решения задач на построение», циркуль, линейка без делений, презентация по теме «Простейшие задачи на построение», линейка с делениями, транспортир.
I. Организационный момент Сообщить тему урока и сформулировать цели урока.
II. Проверка домашнего задания Проверка домашнего задания: № 144, № 145, № 147.
III. Всесторонняя проверка знаний. Теоретический опрос: «Дайте определение окружности», «Что такое центр, радиус, хорда и диаметр окружности»
IV. Подготовка учащихся к активному сознательному усвоению знаний.
Для подготовки учащихся к восприятию нового материала можно выполнить следующие упражнения:
- Какой инструмент используется для того, чтобы начертить отрезок заданной длины? А угол заданной градусной меры?
Задания даются по одному на ряд, а затем заслушать учащихся.
1) Начертите , такой что АВ = 3,6 см, АС = 2,7 см, .
2) Начертите , такой что АВ = 4 см, .
3) Начертите , такой что АВ = 5 см, ВС = 4 см, АС = 6 см.
Эти задачи мы решали с помощью линейки с миллиметровыми делениями и транспортира. Но есть такие задачи, в которых бывает оговорено, с помощью каких инструментов нужно построить нужную геометрическую фигуру, например: «С помощью циркуля и линейки построить отрезок, равный данному».
Такие задачи мы будем называть задачами на построение.
V. Усвоение новых знаний.
Задачи на построение – это такие задачи, при решении которых нужно построить геометрическую фигуру, удовлетворяющую условиям задачи, с помощью циркуля и линейки без делений.
На доске плакат «Схема решения задач на построение»:
- Анализ (рисунок искомой фигуры, устанавливающий связи между данными задачи и искомыми элементами, и план построения).
- Построение по намеченному плану.
- Доказательство, что данная фигура удовлетворяет условиям задачи.
- Исследование (при любых ли данных задача имеет решение, и если имеет, то сколько).
С помощью презентации учащиеся рассматривают задачи на построение: «Откладывание от данного луча угла, равного данному», «Построение биссектрисы данного угла»
Дальше можно разделить класс на группы, каждая из которых готовит одну из задач на построение по учебнику в течение 3-5 минут. Далее выходит представитель первой группы и решает на доске задачу, все остальные работают в тетрадях. Затем поочереди решаются остальные задачи.
1-я группа: «На данном луче от его начала отложить отрезок, равный данному» (§22) 2-я группа: «Построить прямую, проходящую через данную точку и перпендикулярную к прямой, на которой лежит данная точка» (§23) 3-я группа: «Построить середину данного отрезка» (§23) VI. Физкультминутка. VII. Закрепление новых знаний. Решить задачу №150. (Один ученик работает у доски, остальные – в тетрадях.)
Задача №150. Даны окружность, точка А, не лежащая на ней, и отрезок PQ. Постройте точку М на окружности так, чтобы AM = PQ. Всегда ли задача имеет решение? Анализ: (рис. 1) Построение: Начертим окружность с центром в точке А и радиусом, равным PQ. Точки пересечения построенной и данной по условию задачи окружностей – искомые точки. Таких точек может быть: 1) две, если окружности пересекаются в двух точках; 2) одна, если окружности имеют одну общую точку; 3) ни одной, если окружности не пересекаются.
VIII. Итоги урока и домашнее задание: §22, 23 – разобрать подробно все задачи, подготовиться отвечать на вопросы 17-21 страница 50, записать решение № 153 в тетрадь, № 149 (рассмотрите все три случая: две точки, одна точка, ни одной точки).