Семинар ДООМ Теорема о вписанном угле
Строка 63: | Строка 63: | ||
Далее учащиеся исправляют определение и произносят его полностью: | Далее учащиеся исправляют определение и произносят его полностью: | ||
'''Угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется вписанным углом.''' | '''Угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется вписанным углом.''' | ||
+ | '''4. Доказательство теоремы о вписанном угле.''' (15 минут). | ||
+ | '''Практическая работа.''' | ||
+ | 1) Начертите в тетради окружность и постройте три вписанных угла, стороны которых проходят через две точки, лежащие на окружности, а вершины находятся в одной полуплоскости относительно прямой АВ. | ||
+ | 2) Измерьте транспортиром эти углы. | ||
+ | 3) Запишите на доске и в тетради получившееся соотношение. | ||
+ | Запись на доске и в тетради. | ||
+ | АСВ= АDВ= АЕВ. | ||
+ | Вопрос: Что можно сказать про величины всех вписанных углов, стороны которых проходят через точки А и В, а вершины лежат по одну сторону прямой АВ. | ||
+ | - Предположительный ответ: Они равны. | ||
+ | Следствие 1. Вписанные углы, опирающиеся на одну и ту же дугу, равны. | ||
+ | Работа с учебником. | ||
+ | Прочитайте формулировку теоремы в учебнике. Посмотрите на рис.218(а,б,в). | ||
+ | Угол В на всех рисунках вписанный. | ||
+ | Проблемный вопрос: Какой центральный угол соответствует этому углу? | ||
+ | Начертите три окружности и в каждую впишите угол. Но все углы нарисуйте по разному (как на рис.218а,б,в.).Посмотрите рисунки в учебнике. Чем они различаются? Как расположена точка О на чертежах. |
Версия 12:49, 29 ноября 2009
Участник: Молдагалиева Дамира Ароновна Тема урока: Теорема о вписанном угле.
5 –ый урок в главе 8 «Окружность», 2 урок в теме «Центральные и вписанные углы».
Тип урока: введение нового материала. Оборудование: интерактивная доска, транспортир, угольник, линейка Цели урока: • Обучения: ввести и закрепить определение вписанного угла, сформулировать теорему о вписанном угле, получить вместе с учащимися доказательство теоремы и закрепить его. • Развития: учить осознавать на отдельных примерах правила образования определений, обучать на примерах подведению под определение, обратить внимание на метод доказательства - рассмотрение всех частных случаев. • Воспитания: воспитание аккуратности (аккуратное выполнение чертежей на доске и в тетрадях, рациональное распределение записей), рациональное распределение времени, критичности.
Структура урока:
1. Организационный момент. (2 минуты) 2. Подготовка к изучению нового материала.(6 минут) 3. Введение определение вписанного угла. (5 минут) 4. Доказательство теоремы о вписанном угле. (15 минут) 5. Закрепление формулировки теоремы. (10 минут) 6. Подведение итогов урока. Ход урока:
1.Организационный момент.
Приветствие, сообщение темы и задач урока. Сегодня изучим новые понятия вписанного угла, свойство вписанного угла, а также повторим старый материал, который потребуется для изучения нового.
2. Подготовка к изучению нового материала.(6 минут).
Для всего класса: Тест.(4 мин) (с последующей проверкой).
Индивидуально у доски ( в это же время) проверка домашнего задания №652.
( заранее учителем готовится решение на интерактивной доске и скрывается за «шторкой». После выполнения всем классом теста, проверяется правильность выполнения домашнего задания.
Устная фронтальная работа:
• сформулировать теорему о сумме углов треугольника.
• сформулировать теорему о внешнем угле треугольника.
• Решить задачи
Какими теоремами пользовались при нахождении угла?
3. Введение определения вписанного угла.
Учитель: Сегодня познакомимся с новым понятием – вписанный угол. На рисунке 3 вы видите 2 вписанных угла, на рисунках 4 и 5 углы не являются вписанными.
-Какой угол назовем вписанным? -Предположительный ответ: Если вершина лежит на окружности. -Но ведь и на рисунке 5 вершина угла лежит на окружности, однако он не является вписанным.
-Предположительный ответ: Если стороны углов касаются окружности. -На рисунке 3 стороны углов касаются окружности? - Предположительный ответ: Стороны являются хордами. -Хорды-отрезки, а стороны углов -лучи. Далее учащиеся исправляют определение и произносят его полностью: Угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется вписанным углом. 4. Доказательство теоремы о вписанном угле. (15 минут). Практическая работа. 1) Начертите в тетради окружность и постройте три вписанных угла, стороны которых проходят через две точки, лежащие на окружности, а вершины находятся в одной полуплоскости относительно прямой АВ. 2) Измерьте транспортиром эти углы. 3) Запишите на доске и в тетради получившееся соотношение. Запись на доске и в тетради.
АСВ= АDВ= АЕВ.
Вопрос: Что можно сказать про величины всех вписанных углов, стороны которых проходят через точки А и В, а вершины лежат по одну сторону прямой АВ.
- Предположительный ответ: Они равны.
Следствие 1. Вписанные углы, опирающиеся на одну и ту же дугу, равны. Работа с учебником. Прочитайте формулировку теоремы в учебнике. Посмотрите на рис.218(а,б,в). Угол В на всех рисунках вписанный. Проблемный вопрос: Какой центральный угол соответствует этому углу? Начертите три окружности и в каждую впишите угол. Но все углы нарисуйте по разному (как на рис.218а,б,в.).Посмотрите рисунки в учебнике. Чем они различаются? Как расположена точка О на чертежах.