Семинар ДООМ Практические приложения подобия треугольников

Материал из ТолВИКИ
(Различия между версиями)
Перейти к: навигация, поиск
(<span style="color:#008B8B">Задание 3 «Геометрический тренинг»</span>)
(<span style="color:#008B8B">Задание 4</span>)
Строка 116: Строка 116:
 
Измерь своим оригинальным способом высоту своей школы, дома в котором ты живешь или какой-нибудь достопримечательности вашего города (населенного пункта).
 
Измерь своим оригинальным способом высоту своей школы, дома в котором ты живешь или какой-нибудь достопримечательности вашего города (населенного пункта).
  
Познакомьтесь, как подобную задачу в глубокой древности решил Фалес, а также познакомьтесь с другими методами решения таких задач Модуль 3, проанализируйте свои результаты.
+
Познакомьтесь, как подобную задачу в глубокой древности решил Фалес, а также познакомьтесь с другими методами решения таких задач Модуль 3, Модуль 4, проанализируйте свои результаты.
  
 
Модуль 4),
 
 
Пришло время посмотреть, как вы усвоили материал данного урока.
 
Пришло время посмотреть, как вы усвоили материал данного урока.
 
Кто не слышал о загадочном Бермудском треугольнике, в котором бесследно исчезают корабли и самолеты? А ведь знакомый всем нам с детства треугольник также таит в себе немало интересного и загадочного, и вы убедились, что свойство подобия треугольников помогает решить немало практических задач. Подводя итоги урока, выполните Задание 7.
 
Кто не слышал о загадочном Бермудском треугольнике, в котором бесследно исчезают корабли и самолеты? А ведь знакомый всем нам с детства треугольник также таит в себе немало интересного и загадочного, и вы убедились, что свойство подобия треугольников помогает решить немало практических задач. Подводя итоги урока, выполните Задание 7.

Версия 21:32, 19 ноября 2010

Содержание

Дистанционный урок по математике

Автор: Сайфутдинова Елена Валерьевна Участник:Сайфутдинова Елена Валерьевна

Координатор команды Пифагорчики Участник:Пифагорчики ID 149

Уважаемые участники методического семинара, предлагаю Вашему вниманию разработку дистанционного урока по математике по теме «Практические приложения подобия треугольников», материалы которого могут быть использованы для проведения традиционных уроков в школе.

Преамбула

«Измерь самого себя – и ты станешь настоящим геометром!» – воскликнул средневековый философ Марсилио Сичино. Измерять самих себя мы не будем, а вот измерить высоту дерева, соседнего здания или какой-нибудь исторической достопримечательности, почему бы и нет?

Форма проведения

веб-форум

Продолжительность

2 дня

Требования к учащимся

Учащиеся должны знать:

  • определение пропорциональных отрезков;
  • определение подобных треугольников;
  • определение подобных фигур;
  • признаки подобия треугольников.

Учащиеся должны уметь:

применять данные понятия и признаки для решения простейших геометрических задач.

Аннотация урока

Подобие треугольников широко используется при решении самых разных прикладных задачах, а определения и формулировки свойств, теорем, которые получены самостоятельно экспериментальным путем, всегда запоминаются лучше и основательнее. В любой области знаний, а в геометрии особенно, очень важно смотреть и видеть, замечать различные особенности геометрических фигур, делать выводы из замеченных особенностей. Эти умения, которые вместе можно назвать «геометрическим зрением», необходимо постоянно тренировать и развивать. Кроме того, материал, связанный с подобием, позволяет увидеть и содержательно реализовать межпредметные связи с алгеброй (пропорциональность, уравнение), физикой (геометрическая оптика), историей (исторические справки о великих математиках древности).

Цели урока

Личностные:

  • приобретение веры в себя, в свои потенциальные возможности;
  • реализация творческих, креативных способностей личности.

Предметные:

  • изучение понятия и свойства средней линии треугольника;
  • развитие умений обобщать, абстрагировать и конкретизировать свойства изучаемых объектов и отношений, и применять их при решении практических задач;
  • развитие геометрической зоркости.

Креативные:

  • получение и обозначение новых геометрических объектов опытным путем;
  • разработка и поиск новых методов решения известных задач.

Когнетивные:

  • познание объектов окружающей реальности;
  • изучение способов решения возникающих проблем;
  • проведение практическо - исследовательской работы на местности.

Оргдеятельностные:

  • овладение навыками самоорганизации учебной деятельности;
  • организация коммуникаций для демонстрации и сравнения разработок учащихся по проблеме измерения расстояний до недоступной точки.

Программа

Учебный предмет и класс: Геометрия, 8-9 класс.

Раздел/тема: Подобие треугольников/ Применение подобия треугольников к доказательству теорем и решению прикладных задач.

Основная цель: Развитие навыков решения прикладных задач по теме «Подобие треугольников».

Главная проблема урока: Можно ли, не используя специальных измерительных приборов, вычислить расстояние до недоступной точки?

Круг реальных объектов действительности, предлагаемых учащимся при изучении: Высота здания, высота дерева, радиус земного шара.

Этапы урока по минутам:

  • Модуль 1, Задание 1 – повторение (30 мин) Модуль 1
  • Задание 2, Модуль 2 – изучение нового материала (30 мин) Модуль 2
  • Задание 3 – геометрический тренинг (5 мин)
  • Задание 4, Модуль 3 – решение прикладных задач (60 мин) Модуль 3
  • Задание 5, Модуль 4 – дополнительная прикладная задача (30 мин) Модуль 4
  • Задание 6 – итоговый контроль (20 мин)
  • Задание 7 – рефлексия (5 мин)

Сценарий коммуникаций в форуме

Здравствуйте, дорогие ребята! Я рада приветствовать вас на дистанционном уроке «Практические приложения подобия треугольников». Понятие подобия является одним из важнейших в курсе геометрии. Нас везде окружают реальные предметы, дающие наглядное представление о подобных фигурах: географические карты, фотографии, модели автомобилей, кораблей, самолетов и т.д. Главная проблема урока: Можно ли, не используя специальных измерительных приборов, вычислить расстояние до недоступной точки? Как понятие подобия помогает решить эту проблему. По окончании урока вы научитесь применять подобие треугольников при доказательстве теорем и решении прикладных задач, а именно, определять расстояние до недоступной точки. А пока, в качестве разминки выполните Задание 1. Если у вас возникнут затруднения, то вы можете обратиться к Модулю 1. Модуль 1


Задание 1 «Понятие подобия»

Рисунок 1
Рисунок 2

а) На приведенных чертежах (Рисунок 1) изображены фигура А и фрагмент подобной ей фигуры А'. Проведи недостающие линии и дострой фигуру А'.

б) Сколько всего подобных треугольников изображено на чертежах (Рисунок 2)?

в) Методом подобия пользуются архитекторы, конструкторы, геодезисты, художники и многие другие специалисты. Перед тем как строить дом, завод или какое-нибудь другое сооружение, сначала создают его план – уменьшенное изображение будущего строения. Увеличивая фотоснимки, тоже получают подобные изображения. Составь свой расширенный список профессий которые в своей деятельности используют понятие подобия. Прокомментируй свою работу.

- Указать точные даты возникновения основных понятий математики в древнейшие времена невозможно. Еще до возникновения письменности у первобытных народов стали складываться некоторые представления о числах и фигурах. И все же за каждым математическим понятием, обозначением, доказательством «стоят» люди. Например, доказательство первых теорем приписывают Фалесу Милетскому, а понятие «координата» впервые ввел в употребление Г.В.Лейбниц. Сейчас вам предлагается выполнить «Исследовательскую работу» на предмет введения в геометрию нового понятия, и доказательство его свойств.

Задание 2 «Исследовательская работа»

План работы

  • 1 этап. Приготовь макет треугольника. Для этого вырежи из бумаги произвольный треугольник.
  • 2 этап. Найди середины любых двух сторон твоего треугольника. Как это можно сделать, не прибегая к измерительным приборам?
  • 3 этап. На модели проведи отрезок соединяющий середины двух сторон твоего треугольника. Какое название ты бы мог придумать такому отрезку? Что в нем особенного? Сколько таких отрезков можно построить для одного треугольника?
  • 4 этап. Сравни длину получившегося отрезка с длиной третьей стороны треугольника. Что еще интересного ты заметил?
  • 5 этап. По результатам 4 этапа задания сформулируй и докажи теорему о свойствах отрезка, соединяющего середины двух сторон треугольника.

После выполнения этого задания вы сравните полученные результаты с культурно-историческим аналогом описанном в модуле 2.

Модуль 2

Задание 3 «Геометрический тренинг»

Рисунок 3

В любой области знаний, а в геометрии особенно, очень важно смотреть и видеть, замечать различные особенности геометрических фигур, делать выводы из замеченных особенностей. Эти умения, которые вместе можно назвать «геометрическим зрением», необходимо постоянно тренировать и развивать. При выполнении этого задания надо, как можно быстрее, на рисунке 3 среди геометрических фигур найти "звезду". Удачи!

Задание 4

Вы никогда не задавались вопросом: как люди в глубокой древности измерили радиус Земли и высоту египетских пирамид? А можно ли самим, без специальных технических средств измерить высоту дерева, соседней «высотки» или измерить ширину реки?

«Фараона многое в тебе восхищает, Фалес; но особенно ему понравилось, как измерил ты высоту пирамиды, не приложив никакого труда и не пользуясь никаким орудием. Ты поставил посох там, где кончалась тень от пирамиды, так, что солнечный луч, касаясь их вершин, образовал два треугольника; и ты показал, что как длина одной тени относится к длине другой тени, так и высота пирамиды относится к высоте посоха» Плутарх «Пир семи мудрецов». В чем состоят затруднения решения подобных задач? Сделай чертеж и составь к нему краткий комментарий. Какой способ определения высоты пирамиды мог бы предложить ты? Измерь своим оригинальным способом высоту своей школы, дома в котором ты живешь или какой-нибудь достопримечательности вашего города (населенного пункта).

Познакомьтесь, как подобную задачу в глубокой древности решил Фалес, а также познакомьтесь с другими методами решения таких задач Модуль 3, Модуль 4, проанализируйте свои результаты.

Пришло время посмотреть, как вы усвоили материал данного урока. Кто не слышал о загадочном Бермудском треугольнике, в котором бесследно исчезают корабли и самолеты? А ведь знакомый всем нам с детства треугольник также таит в себе немало интересного и загадочного, и вы убедились, что свойство подобия треугольников помогает решить немало практических задач. Подводя итоги урока, выполните Задание 7. Домашнее Задание 8.

Личные инструменты
наши друзья
http://аудиохрестоматия.рф/