|
|
Строка 69: |
Строка 69: |
| | | |
| | | |
− | == Симметричная троичная система счисления ==
| |
− |
| |
− | Позиционная целочисленная симметричная троичная система счисления была предложена итальянским математиком Фибоначчи (Леонардо Пизанский) (1170—1250) для решения «задачи о гирях». Задачу о наилучшей системе гирь рассматривал Лука Пачоли (XV в.). Частный случай этой задачи был опубликован в книге французского математика Клода Баше де Мезириака «Сборник занимательных задач» в XVII веке в 1612 г. Русский перевод книги К. Г. Баше «Игры и задачи, основанные на математике» вышел в Петербурге в 1877 г. Позже этой задачей занимался петербургский академик Леонард Эйлер, интересовался Д. И. Менделеев.
| |
− |
| |
− | Симметричность при взвешивании на рычажных весах использовали с древнейших времён, добавляя гирю на чашу с товаром. Элементы троичной системы счисления были в системе счисления древних шумеров, в системах мер, весов и денег, в которых были единицы равные 3. Но только в симметричной троичной системе счисления Фибоначчи объединены оба этих свойства.
| |
− |
| |
− | Симметричная система позволяет изображать отрицательные числа, не используя отдельный знак минуса. Число 2 изображается цифрой 1 в разряде троек и цифрой 1 (минус единица) в разряде единиц. Число −2 изображается цифрой 1 (минус единица) в разряде троек и цифрой 1 в разряде единиц.
| |
− | Возможны шесть соответствий цифр (знаков) троичной симметричной системы счисления и цифр (знаков) троичной несимметричной системы счисления.
| |
− |
| |
− | '''Свойства'''
| |
− |
| |
− | Благодаря тому что основание 3 нечётно, в троичной системе возможно симметричное относительно нуля расположение цифр: ''−1, 0, 1,'' с которым связано пять ценных свойств:
| |
− |
| |
− | * Естественность представления отрицательных чисел;
| |
− | * Отсутствие проблемы округления.
| |
− | * Таблица умножения в этой системе, как отметил О. Л. Коши, примерно в четыре раза короче.(стр.34).
| |
− | * Для изменения знака у представляемого числа нужно изменять знаки у всех его цифр. Это свойство увеличивает число операций при перемене знака (в несимметричных системах изменяется только один знаковый разряд), но повышает надёжность при сбоях в одном или более разрядах.
| |
− | * При суммировании большого количества чисел значение для переноса в следующий разряд растёт с увеличением количества слагаемых не линейно, а пропорционально квадратному корню числа слагаемых.
| |
− | * По затратам числа знаков на представление чисел она равна троичной несимметричной системе.
| |
− |
| |
− | '''Представление отрицательных чисел'''
| |
− |
| |
− | Наличие положительной и отрицательной цифр позволяет непосредственно представлять как положительные, так и отрицательные числа. При этом нет необходимости в специальном разряде знака и не надо вводить дополнительный (или обратный) код для выполнения арифметических операций с отрицательными числами. Все действия над числами, представленными в троичной системе счисления с цифрами 0, 1, −1, выполняются естественно с учётом знаков чисел. Знак числа определяется знаком старшей значащей цифры числа: если она положительна, то и число положительно, если отрицательна, то и число отрицательно. Для изменения знака числа надо изменить знаки всех его цифр (то есть инвертировать его код инверсией Лукасевича). Например:
| |
− |
| |
− | [[Изображение:32df26593ca240899460e0ed41b91333.png]]
| |
− |
| |
− | [[Изображение:8f5bae18552bdf4bd5912ddebbe63d09.png]]
| |
− |
| |
− | '''Округление'''
| |
− |
| |
− | Другим полезным следствием симметричного расположения значений цифр является отсутствие проблемы округления чисел: абсолютная величина части числа, представленной отбрасываемыми младшими цифрами, никогда не превосходит половины абсолютной величины части числа, соответствующей младшей значащей цифре младшего из сохраняемых разрядов. Следовательно, в результате отбрасывания младших цифр числа получается наилучшее при данном количестве оставшихся цифр приближение этого числа, и округление не требуется.
| |
− |
| |
− | '''Перевод чисел из десятичной системы в троичную'''
| |
− |
| |
− | Перевод чисел из десятичной системы в троичную и соответствующий ему вопрос о гирях подробно изложены в книгах [16][17]. Там же рассказано о применении троичной системы гирь в русской практике.
| |
− |
| |
− | '''Перевод в другие системы счисления'''
| |
− |
| |
− | Всякое число, записанное в троичной системе счисления с цифрами 0, 1, −1, можно представить в виде суммы целых степеней числа 3, причём если в данном разряде троичного изображения числа стоит цифра 1, то соответствующая этому разряду степень числа 3 входит в сумму со знаком «+», если же цифра −1, то со знаком «-», а если цифра 0, то вовсе не входит. Это можно представить формулой
| |
− |
| |
− | [[Изображение:94dfa365e034eb004fd2259c0456c21f.png]], где
| |
− |
| |
− | [[Изображение:5749b16b9eac7c134e595dcfb2d6e505.png]]- целая часть числа,
| |
− |
| |
− | [[Изображение:Bb1795907115a9e20e7eb84cd8a21908.png]] — дробная часть числа,
| |
− |
| |
− | причём коэффициенты K могут принимать значения'' { 1, 0, −1 }''.
| |
− |
| |
− | Для того чтобы число, представленное в троичной системе, перевести в десятичную систему, надо цифру каждого разряда данного числа умножить на соответствующую этому разряду степень числа 3 (в десятичном представлении) и полученные произведения сложить.
| |
− |
| |
− | '''Практические применения'''
| |
− |
| |
− | * Работая в палате мер и весов, Д. И. Менделеев, с учётом симметричной троичной системы счисления, разработал цифровой ряд значений весов разновеса для взвешивания на лабораторных весах, который используется по сей день.
| |
− | * Симметричная троичная система использовалась в советской ЭВМ Сетунь.
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | Интернет-ресурсы:
| |
− |
| |
− | [http://ru.wikipedia.org/wiki/%D0%A2%D1%80%D0%BE%D0%B8%D1%87%D0%BD%D0%B0%D1%8F_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0_%D1%81%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F#cite_note-0 Википедия]
| |
− |
| |
− | [http://traditio.ru/wiki/%D0%A2%D1%80%D0%BE%D0%B8%D1%87%D0%BD%D0%B0%D1%8F_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0_%D1%81%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F traditio]
| |
− |
| |
− | [http://ru.vlab.wikia.com/wiki/%D0%A2%D1%80%D0%BE%D0%B8%D1%87%D0%BD%D0%B0%D1%8F_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0_%D1%81%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F Virtual Laboratory Wiki ]
| |
| | | |
| | | |
| [[Категория:ТГУ]] | | [[Категория:ТГУ]] |
1. Каждый студент добавляет одно наименование системы счисления и пишет о нем небольшую вики-статью. В статье обязательно дать не менее 3 ссылок на Интернет-ресурсы, предоставившие информацию. В статье рассказать об истории возникновения данной системы счисления, правилах построения чисел, привести примеры записи различных чисел в выбранной системе счисления.
2. Для проверки знаний о системе счисления, составить небольшой тест при помощи сервиса http://master-test.net/.При создании теста предусмотреть вывод результатов тестирования и комментариев по неправильным ответам.
3. Каждому студенту необходимо пройти тестирование на знание всех систем счисления.
4. Оценить по одной статье. Для выставления оценок по критериям, необходимо:
Системы счисления, в которых каждой цифре соответствует величина, не зависящая от ее места в записи числа, называются непозиционными
Системы счисления, в которых вклад каждой цифры в величину числа зависит от ее положения (позиции) в последовательности цифр, изображающих число, называются позиционными.