Копилка знаменитых задач продолжение 6

Материал из ТолВИКИ
(Различия между версиями)
Перейти к: навигация, поиск
(Задачи участников ДООМ)
(Задачи участников ДООМ)
Строка 356: Строка 356:
 
Скажите же, мудрые математики, сколько мешков несла лошадь и сколько нес мул?».  
 
Скажите же, мудрые математики, сколько мешков несла лошадь и сколько нес мул?».  
  
 +
РЕШЕНИЕ
 +
 +
Пусть x мешков -  несла лошадь, а y мешков - нес мул.
 +
 +
Составим систему уравнений:
 +
 +
y + 1 = 2(x-1)
 +
y - = x + 1
 +
 +
или
 +
 +
2x - y = 3
 +
y - x = 2
 +
 +
Решив её, находим x = 5, y = 7.
 +
Лошадь несла 5 мешков и 7 мешков - мул.
  
 
  Четверо братьев
 
  Четверо братьев
Строка 362: Строка 378:
  
 
У четырех братьев 45 рублей. Если деньги первого увеличить на 2 рубля, деньги второго уменьшить на 2 рубля, деньги третьего увеличить вдвое, а деньги четвертого уменьшить вдвое, то у всех окажется поровну. Сколько было у каждого?
 
У четырех братьев 45 рублей. Если деньги первого увеличить на 2 рубля, деньги второго уменьшить на 2 рубля, деньги третьего увеличить вдвое, а деньги четвертого уменьшить вдвое, то у всех окажется поровну. Сколько было у каждого?
 +
 +
РЕШЕНИЕ
 +
 +
Пусть x руб. - у первого брата, y руб. - у второго брата, z руб. - у третьего брата, t руб. - у четвертого брата.
 +
 +
Составим уравнение:
 +
 +
x + 2 = y - 2 = 2z = t/2
 +
 +
Расчленяем уравнение на три отделоных и решаем.
 +
 +
x + 2 = y - 2
 +
 +
x + 2 = 2z
 +
 +
x + 2 = t/2.
 +
Получаем следующие ответы: x = 8, y = 12, z = 5, t = 20.
 +
 +
У первого брата 8 руб., у второго - 12 руб., у третьего - 5 руб., у четвертого - 20 руб.
  
 
  Задача Д.И.Менделеева  
 
  Задача Д.И.Менделеева  

Версия 11:16, 6 ноября 2008

Посмотреть страницу Копилка знаменитых задач.


Задачи участников ДООМ

--Bookworm ID 213 13:03, 4 ноября 2008 (UZT)

Задача № 39. Старинная задача: Один пастух говорит другому: «Дай мне одну из твоих овец и у меня буде вдвое более овец чем у тебя». Второй пастух отвечает: Нет, лучше ты дай мне одну из твоих овец, тогда у нас будет овец поровну». Сколько овец было у каждого пастуха? Решение: Обозначим кол-во овец первого пастуха за х, а кол-во овец у второго – у. Тогда получим систему из двух уравнений: х+1=(у-1)2 и х-1=у+1. Решая систему получим, что х=7, а у=5. Ответ: у первого пастуха было 7 овец, а у второго 5.

Задача № 40. Задача Льюиса Кэррола. Несколько человек сидят по кругу так, что у каждого из них имеется по одному соседу справа и слева. Каждый из сидящих располагает определенным количеством шиллингов. У первого на 1 шиллинг больше, чем у второго, у второго на 1 шиллинг больше, чем у третьего, и т. д. Первый из сидящих отдает 1 шиллинг второму, второй 2 шиллинга третьему и т. д. Каждый отдает следующему на 1 шиллинг больше, чем получил сам, до тех пор, пока, это возможно. В результате у одного из сидящих шиллингов оказывается в 4раза больше, чем у его соседа. Сколько всего было людей и сколько шиллингов было сначала у самого бедного из них? Решение: Пусть m–число людей, k–число шиллингов у последнего (самого бедного) из них. После первого тура каждый из участников игры станет на 1 шиллинг беднее, а сумма, передаваемая последним из игроков первому, составит m шиллингов. Следовательно, после некоторого числа k туров каждый участник станет беднее на k шиллингов, у последнего участника не останется ни одного шиллинга, а сумма передаваемая им первому участнику, составит mk шиллингов. Игра прекратится на следующем туре, когда очередь пополнять «передвижную кассу» дойдет до последнего игрока. В это момент в «кассе» будет mk+m–1 шиллингов, у предпоследнего игрока не останется ничего, а у первого m–2 шиллингов. Ясно, что единственными участниками, «состояния» которых относятся как 4:1, могут быть лишь первый и последний игроки. Следовательно, mk+m–1=4(m–2), либо 4(mk+m–1)=m–2. Первое уравнение преобразуем к виду mk=3m–7, или k=3–7/m. Ясно, что оно не имеет иных решений в целых числах, кроме m=7, k=2. Второе уравнение преобразуется к виду 4mk=2–3m. Оно не имеет решений в целых положительных числах. Ответ: 7 человек, 2 шиллинга.


Задача №41. Задача Льюиса Кэррола. 1 июля, когда на моих карманных часах было 8 часов утра, стенные часы показывали 8часов 4 минуты. Взяв с собой карманные часы, я отправился в Гринвич и обнаружил, что, когда они показывают полдень, точное время в действительности равно 12часам 5 минутам. Вечером того же дня, когда на моих часах было ровно 6 часов, стенные часы показывали 5часов 59 минут. 30 июля в 9 часов утра по моим карманным часам стенные часы показывали 8часов 59 минут. В Гринвиче, когда мои карманные часы показывали 12 часов 10 минут, точное время было 12часов 5 минут. Вечером того же дня карманные часы уже показывали 7 часов, когда на стенных ещё было 6 часов 58 минут. Карманные часы я завожу лишь при поездке в Гринвич. В течении суток они идут равномерно. Настенные часы идут всегда, причем идут равномерно. Каким образом мне узнать, когда наступает полдень (по точному времени) 31 июля? Решение: 1 июля мои карманные часы за 10 ч ушли вперед по сравнению со стенными часами на 5 мин, то есть спешили на ½ мин в час, или на 2 мин в 4 часа. Следовательно, когда карманные часы показывали полдень, на стенных часах было 12ч 2 мин. Иначе говоря, в тот момент, когда точное время было 12ч 5мин, стенные часы отставали на 3мин (от точного времени). 30 июля карманные часы отстали от стенных на 1мин за 10ч, то есть отставали на 6с в час, или на 19с за 3ч 10мин. Таким образом, когда карманные часы показывали 12ч 10мин, на стенных было 12ч 7мин 19с. иначе говоря, в момент, когда точное время было 12ч 5мин, стенные часы спешили на 2мин 19с (по сравнению с точным временем). Итак, стенные часы уходят вперед по сравнению с точным временем на 5мин 19с за 29дней, что составляет 319с за 29дней, или 11с в день, или 11/24*12с за 5мин. Следовательно, 5 мин точного времени соответствует 5мин 11/288с, отсчитанным по карманным часам. 31 июля, когда точное время равнялось 12ч 5мин, стенные часы ушли вперед на 2мин 19с+11с, то есть показывали 12ч 7½мин. Следовательно, если вернуться на 5мин назад по точному времени, то стрелки стенных часов следует отвести на 5мин 11/288с назад, то есть поставить так, чтобы они показывали12ч 2мин 29 277/288с. Ответ: в момент, когда 31 июля стенные часы показывают это время, по точному времени наступает полдень.

Задача №42. Задача Льюиса Кэррола. Два пешехода А и В пускаются в путь ровно в 6 часов утра в один и тот же день. Оба идут по одной дороге и в одном направлении. Пешеход В сначала опережает пешехода А на 14 миль. Оба идут с 6 утра до 6 вечера. В первый день пешеход А, двигаясь с постоянной в течении дня скоростью, проходит 10 миль, во второй - 9, в третий – 8 миль и т. д. Пешеход В, двигаясь также с постоянной в течении дня скоростью, проходит в первый день 2 мили, во второй – 4, в третий 6 и т. д. Где и когда пешеход А нагонит Пешехода В? Решение: Пусть х - число дней, прошедших с того момента, как пешеходы пустились в путь, до встречи. Тогда: [2*10–([х–1)]*х/2=14+[2*2+( х–1)*2]*х/2 То есть: 21х/2 – х2/х=14+х+х2 3х2–19х+28=0 х1=4, х2=7/3. Ответ 7/3 указывает на то, что встреча происходит на 3-й день. Ведем у – число часов, которое пешеходы находятся в пути. Отсчитывается с 6-ти часов утра каждого дня. К концу второго дня пути А пройдет 19 миль, а В будет находиться от пункта отправления А на расстоянии 14+6=20 миль. Следовательно, 19 + у*8/12=20+у*6/12 у*2/3=1+у*1/2 откуда у= 6. Таким образом, пешеходы встречаются по происшествии двух с половиной дней (2 дня 6 ч) и четырех дней пути на расстояниях в 23 и 34 мили от отправного пункта пешехода А.

Задача №43. Задача Льюиса Кэррола. Пятеро друзей решили на паях организовать компанию по торговле вином. Каждый из них внес в фонд компании одинаковое количество бутылок, купленного по одной цене. Один из друзей на общем собрании «акционеров» был избран казначеем, другой - продавцом. В обязанность продавцу вменялось продавать вино с 10%-ной надбавкой (по сравнению с покупной ценой). В первый день продавец распил одну бутылку вина, несколько бутылок продал, а всю выручку передал казначею. На второй день продавец не стал пить вина, но прикарманил деньги, полученные от продажи одной бутылки, а всю остальную выручку передал казначею. Вечером того же дня казначей наведался в погреба фирмы и пересчитал оставшиеся бутылки. «вина ровно на 11 фунтов стерлингов», - заметил он себе под нос, покидая погреб. На третий день продавец выпил одну бутылку вина, присвоил себе деньги, полученные от продажи другой бутылки, а всю остальную выручку передал казначею. Поскольку все вино было продано, друзья созвали общее собрание «акционеров» и к своему огорчению обнаружили, что их доходы (то есть разность между суммами, переданными продавцом казначею , и первоначальной стоимостью вина) составили лишь 6 пенсов за бутылку. Доходы эти поступали в течении трех дней равномерно (то есть разность между выручкой, переданной продавцом казначею в конце каждого дня, и первоначальной стоимостью проданного за день вина была одной и той же в течение всех трех дней), но об этом, разумеется, знал лишь продавец. 1. Сколько бутылок вина было куплено в фонд компании? 2. По какой цене друзья покупали вино? Решение: Обозначим число бутылок вина, проданных в первый, второй и третий день, через х, у, z. Предположим, что каждая бутылка была куплена за 10v пенсов и, следовательно, продана за 11v пенсов. В первый день казначей получил от продавца (х–1 )*11v, во второй у*11v –v и в третий день (z –1) *11v–v пенсов. Следовательно, прибыль (разность между выручкой и затратами на покупку вина) составила: в первый день хv–11 , во второй день уv–v и в третий zv-12v пенсов. По условию задачи все три величины равны, откуда у=х–10, z=х+1. Таким образом, полное число бутылок (х+у+z), хранившихся в начале в винном погребе «фирмы», равно 3х – 9. Прибыль от продажи всех бутылок составила (х+у+z)v–24v=(3х–33)v, а прибыль от продажи одной бутылки равна [(3х–33)v]/3х–9.(По условию задачи эта величина равна 6 пенсам.) (х–11)v=(х–3)6 Кроме того, z*11v=11*240, то есть (х+1)*11v=11*240. Комбинируя эти два уравнения, получаем: (х–11)/х+1=6(х–3)/240 (х+1)(х–3)=40(х–11) х2–2х–3=40х–440 х2–42х+437=0 х1,2=(42±4)/2, х1=23, х2=19. Итак, число бутылок равно либо60, либо 48, но поскольку оно должно быть кратно 5, остается лишь одно решение: 60 бутылок. Поскольку(х+1)*11v=11*240, или 24v= 240, то v=10. таким образом, вино было куплено по цене 8 шиллингов 4 пенса за бутылку и продано по цене 9 шиллингов 2 пенса за бутылку. Ответ: Было куплено 60 бутылок, по цене 8 шиллингов 4 пенса за бутылку. --Bookworm ID 213 13:03, 4 ноября 2008 (UZT)



Задачи команды ЛАДА-ВЕКТОР ID_279

Задача №15

Задача из папируса Ахмеса, Египет, ок. 2000г. до н.э.

Приходит пастух с 70 быками. Его спрашивают : «Сколько приводишь ты из своего многочисленного стада?» Пастух отвечает «Я привожу две трети от трети скота. Сочти. Сколько быков в стаде?

Решение: 70быков – 2/3 от трети скота

70:2/3=105(быков) – треть скота

105:1/3=315(быков)

Ответ: В стаде 315 быков.


Задача №16

Задача Евклида, Греция

Ослица и мул шли вместе, нагруженные мешками равного веса. Ослица жаловалась на тяжесть ноши.«Чего ты жалуешься? -сказал мул. Если ты дашь мне один свой мешок моя ноша станет вдвое больше твоей, а если я дам тебе один мешок наши грузы сравняются». Сколько мешков было у каждого?

Решение:

Обозначим за Х число мешков у каждого после передачи одного мешка от мула к ослице. Тогда первоначально у мула было (Х+1) мешков , а у ослицы (Х-2) в два раза меньше, чем у мула.

Составим и решим уравнение:

х+2=2(х-2)

х+2=2х-4

х=6

6+1=7(мешков)- у мула

6-1=5(мешков)- у ослицы

Ответ: 5мешков у ослицы и 7мешков у мула.

Задача №17

Старинная задача

На вопрос о возрасте одна дама ответила: «Мой возраст таков ,что если его возвести в квадрат или умножить на 53 и из результата вычесть 696 ,то получится одно и тоже».

Решая квадратное уравнение, автор замечает: «Так как вопрос касается возраста дамы, то из вежливости нужно перед радикалом поставить нижний знак».

Решим эту задачу с этим дополнительным условием.

Пусть даме x лет. Составим уравнение:

x = 53x – 696,и решим его беря (из вежливости) перед радикалом нижний знак.

x – 53x + 696 = 0

Д = 53 – 4 × 696 = 2809 - 2784 =25, квдратный корень из 25 = 5.

Получим x = (53- 5)/2=24. Итак, даме было 24 года.

Задача № 18

Задача Ал – Каши

Копьё стояло в воде отвесно и высовывалось наружу на 3 локтя. Порыв ветра наклонил его , причём нижний конец копья не изменил положение ,а верхний оказался на поверхности воды на расстоянии 5 локтей от того места где раньше копьё высовывалось из воды. Мы хотим узнать длину копья.

Решение:

Сделаем рисунок.

Задача Ал-Каши.JPG Введём обозначения.

АО перпендикулярно ВС,

АВ = 3 локтя,ВС = 5локтей

Найдём АО.

АО = АВ + ВО

Найдём ВО.

Рассмотрим прямоугольные подобные треугольники АВС и ВСО.

Из подобия треугольника АВС и треугольники ВСО:

АВ/ВС= ВО

3/5=5/ВО

Во = 25/3=8 1/3

АО=АВ=ВО=3+8 1/3=11 1/3 (локтя)

Ответ: Длина копья 11 1/3 локтя.


Задача №19

Задача древнего Китая

Город имеет форму квадрата, в середине каждой стороны которого имеются ворота. Вне города, на расстоянии 20 бу север от северных ворот, стоит столб. Если пройти от южных ворот 14 бу на юг, а затем повернуть на запад и пройти ещё 1775 бу, то как раз в этот момент из-за стен города покажется столб. Какова ширина города?

Задача Ал-Каши рисунок.JPG

Задача Китая.JPG


Задача № 20

Задача (Из арифметики Л.Ф. Магницкого.)

У некоторого человека были для продажи вина двух сортов. Первое ценною 10 гривен ведро, второе же – по 6 гривен. Захотелось ему сделать из тех двух вин, взяв по части, третье вино, чтобы ему цена была по 7 гривен. Какие части надлежат из тех двух вин взять к наполнению ведра третьего вина ценою 6 гривен.

Современное решение:

Пусть для составления одного ведра требуемой смеси нужно взять х ведер первого сорта (х 1) и (1-х) ведер второго сорта. первая часть вина стоит 10х гривен, а вторая 6(1-х) гривен.

Составим уравнение:

10х+6(1-х) = 7, откуда х =1/4 , 1 – х = 3/4 .

Итак, нужно взять 1/4 ведра вина по 10 гривен и 3/4 ведра вина по 6 гривен за ведро.

Старинный способ решения:

Запишем цены вин каждого сорта и цену смеси так:

Задача Магницкого 1.JPG

Вычислить прибыль 7-6=1 и убыток 10-7=3 на каждом ведре и запишем результат по линиям:

Задача Магницкого 2.JPG

Таким образом, 3 части из четырёх приходятся на более дешевое вино и 1 часть – на более дорогое.

--Лада-Вектор ID 279 22:30, 4 ноября 2008 (UZT)

Задача № 21

Задачи из «Арифметики» Л.Ф.Магницкого.

Собака и заяц. Собака усмотрела зайца в 150 саженей от себя. Заяц пробегает за 2 минуты 500 саженей, а собака- за 5 минут 1300 саженей. За какое время собака догонит зайца? Решение: За одну минуту заяц пробегает 250 саженей, а собака 260 саженей. Следовательно, за одну минуту расстояние между собакой и зайцем уменьшиться на 10 саженей. Поскольку между собакой и зайцем, когда собака увидала зайца, было 150 саженей, то собака догонит зайца через 150 х 10= 15 минут.

Задача №22

Задачи из «Арифметики» Л.Ф.Магницкого.

Два воина.

Один воин вышел из города и проходил по 12 верст в день, а другой вышел одновременно и шел так: в первый день прошел 1 версту, во второй день 2 версты, в третий день 3 версты, в четвертый день 4 версты, в пятый 5 верст и так прибавлял каждый день по одной версте, пока не настиг первого. Через сколько дней в второй воин настигнет первого? Решение: В первый день второй воин отстанет на 12 – 2 = 11 верст, во второй еще на 12 – 2 = 10 верст, в третий еще на 12- 3 =9 верст и так далее. На 12 ый день отставание составит (11 +10+9+…+2+1+0) верст. А затем расстояние между ними начнет сокращаться. В 13- й день на 13 – 12 = 1 версту, в 14 день еще на 14 – 12 = 2 версты, в 15 –й день еще на 15 – 12 =3 версты, и , наконец , в 23-й день на 23 – 12= 11 верст. На 23-й день расстояние между ними уменьшиться на ( 1+2+3+…+10+11) верст. Это значит, что второй воин по прошествии 23 дней догонит первого.

Задача №23

Задача XVIII века.

«С чем иностранка к россам привезена?»

Нововыезжей в Россию иностанной мадаме

Вздумалось оценить свое богатство в чемодане:

Новой выдумки нарядное фуро

И праздничный чепец а ля фигаро.

Оценщик был русак,

Сказал мадаме так:

«Богатство твоего первая вещь фуро

Вполчетверта дороже чепца фигаро;

Вообще же не с половиной четыре алтына,

Но настоящая им цена только сего половина»

Спрашивается каждой вещи цена,

С чем иностранка к россам привезена?

(« Вполчетверта»- в 3 1/2 раза).

Решение:

Все имущество мадам было оценено в 1/2 х (4 +1/2) алтынов, что составляет 27/4 копеек. « Чепец фигаро» по условию в 3 1/2 раза дешевле «фуро», и, следовательно , в 4 1/2=9/2 раза дешевле всего имущества. Поэтому чепец стоит 27/4 : 9/2 = 3/2 копейки, а стоимость «фуро» равна 3/2х 31/2=21/4 копейки

Задача №24

Задача XVIII века.

Три бочки.

Хозяин имеет три бочки А,В и С. Бочка А наполнена квасом, бочки В и С- пустые. Если квасом из бочки А наполнить бочку В, то в бочке А останется 2/5 ее содержимого .Если же квасом из бочки А наполнить бочку С, то в бочке А останется 5/9 ее содержимого. Чтобы наполнить обе бочки В и С, надо взять содержимое бочки А и еще добавить 4 ведра кваса. Сколько ведер кваса вмещает каждая бочка?

Решение

Так как после наполнения бочки В в бочке А остается 2/5 ее содержимого, то вместимость бочки В равна3/5 вместимости А. Так как после наполнения бочки С в бочке А остается 5/9ее содержимого, то вместимость бочки С равна 4/9 вместимости бочки А.Значит , вместимость бочек. В и С равна – 3/5+4/9= 47/45=1+ 2/45 вместимости бочки А. Из условия задачи тогда следует, что 2/45 Вместимости бочки А составляют 4 ведра , откуда получаем , что вместимость бочки В равна 90 х 4/9= 40 ведер.

--Лада-Вектор ID 279 23:30, 5 ноября 2008 (UZT)

--Bookworm ID 213 14:15, 5 ноября 2008 (UZT) Задача № 44:Задача из акмимского папируса. Некто взял из сокровищницы 1/13. Из того, что осталось, другой взял 1/17, оставив же он в сокровищнице 150. Сколько было в сокровищнице первоначально? Решение: В рукописи дробная часть ответа 17221/32 дается в виде суммы дробей, числители которых равны 1, а именно: 1/2 + 1/8 + 1/48 + 1/96. Ответ: В сокровищнице было 17221/32.

Задача № 45:Задача Диофанта (из трактата «Арифметика»). Требуется число 100 разделить два раза так, чтобы большая его часть от первого деления была вдвое более меньшей части от второго деления и чтобы большая часть от второго деления Решение: Обозначим меньшую часть от второго деления через х, тогда большая часть от первого деления будет 2х. Найдем теперь меньшую часть от первого деления. Она будет равна 100 – 2х. Следовательно, большая часть второго деления равняется 300 – 6х. Ясно, что обе части от второго деления должны составить 100, т. е. х+(300 – 6х) = 100, откуда х = 40. Следовательно, результат первого деления: меньшая часть равна 20, большая – 80. Результат второго деления: меньшая часть равна 40, большая часть – 60. Ответ: Результат первого деления: меньшая часть равна 20, большая – 80; результат второго деления: меньшая часть равна 40, большая часть – 60.

Задача № 46: Задача из греческой антологии. Видя, что плачет Эрот, Киприда его вопрошает: «Что так тебя горчило, ответствуй немедля!» «Яблок я нес с Геликона немало, - Эрот отвечает, - Музы, отколь ни возьмись, напали на сладкую ношу Частью двенадцатой вмиг овладела Евтерпа, а Клио Пятою долю взяла. Талия – долю восьмую. С частью двадцатой ушла Мельпомена. Четверть взяла Терпсихора, С частью седьмой Эрато от меня убежала. Тридцать плодов утащила Полимния. Сотня и двадцать Взяты Уранией; триста плодов унесла Каллиопа. Я возвращаюсь домой почти что с пустыми руками, Только полсотни плодов мне оставили музы на долю». Решение: Пусть «Яблоки Эрота» - х, тогда осталось у него х – (1/12 х + 1/5 х + 1/8 х + 1/20 х + 1/4 х + 1/7 х) = 30 + 120 + 50. Решая уравнение получаем 25/168 х = 200, из этого х = 1344 яблока. Ответ: У Эрота было 1344 яблока.

Задача №47: Задача из греческой антологии. Вот Полифема циклопа из меди статуя отлита. Руку, уста и единое око ваятель сделал на диво, Скрывши в них трубы: водой великан истекает как будто. Хитрое в трубах устройство: ведущая в руку способна Весь водоем до краёв через три дня наполнить. Оку – достаточно дня, а устам и всего лишь две пятых, Вместе все три водоём скоро ли могут наполнить? Решение: Пусть водоем – 1, тогда скорости: руки – 3, ока – 1, уст – 2/5 . Получаем уравнение: 1: (3 + 1 + 2/5) = 4 2/5 дня. Ответ: За 4 2/5 дня рука, око и уста заполнят водоем.

Задача №48: Задача из греческой антологии.- Хроноса (бог времени) вестник, скажи, какая часть дня миновала? - Дважды две трети того, что прошло, остаётся. (У древних греков день длился 12 часов.) Решение: Задача сводится к решению уравнения 4/3 х + х = 12, откуда х = 5 1/7 дня. Ответ: 5 1/7 дня миновала. --Bookworm ID 213 14:15, 5 ноября 2008 (UZT)

Участник:ПОБЕДА ID_235

Лошадь и мул

ЗАДАЧА


«Лошадь и Мул шли бок о бок с тяжелой поклажей на спине. Лошадь жаловалась на свою непомерно тяжелую ношу. «Чего ты жалуешься? - отвечал ей мул. - Ведь если я возьму у тебя один мешок, ноша моя станет вдвое тяжелее твоей. А вот если бы ты сняла с моей спины один мешок, твоя поклажа стала бы одинакова с моей».

Скажите же, мудрые математики, сколько мешков несла лошадь и сколько нес мул?».

РЕШЕНИЕ

Пусть x мешков - несла лошадь, а y мешков - нес мул.

Составим систему уравнений:

y + 1 = 2(x-1) y - = x + 1

или

2x - y = 3 y - x = 2

Решив её, находим x = 5, y = 7. Лошадь несла 5 мешков и 7 мешков - мул.

Четверо братьев

ЗАДАЧА

У четырех братьев 45 рублей. Если деньги первого увеличить на 2 рубля, деньги второго уменьшить на 2 рубля, деньги третьего увеличить вдвое, а деньги четвертого уменьшить вдвое, то у всех окажется поровну. Сколько было у каждого?

РЕШЕНИЕ

Пусть x руб. - у первого брата, y руб. - у второго брата, z руб. - у третьего брата, t руб. - у четвертого брата.

Составим уравнение:

x + 2 = y - 2 = 2z = t/2

Расчленяем уравнение на три отделоных и решаем.

x + 2 = y - 2

x + 2 = 2z

x + 2 = t/2. Получаем следующие ответы: x = 8, y = 12, z = 5, t = 20.

У первого брата 8 руб., у второго - 12 руб., у третьего - 5 руб., у четвертого - 20 руб.

Задача Д.И.Менделеева 

ЗАДАЧА

Пусть имеется любой груз в 86 г. Какие нужно выбрать гири, чтобы, имея только один набор их, уравновесить это груз, если положить гири только на правую чашку весов?

РЕШЕНИЕ

Так как всякое натуральное число можно выразить в двоичной чистеме счисления, где в каждом разряде может быть не более одной единицы, то получается, что всякое натуральное число может быть представлено в виде суммы степеней 2 и 1. На этом свойстве и основывается возможность на весах всякий груз, содержащий целое число граммов, гирями "двоичной системы счисления". Число 86 в двоичной будет 1010110 = 26 + 24 + 22 + 2 = 64 + 16 + 4 + 2. Имея набор гирь, груз 86 г может быть уравновешен гирями 64 г, 16 г, 4 г, 2 г.

Личные инструменты
наши друзья
http://аудиохрестоматия.рф/