Учебное пособие "Системы счисления"
Строка 29: | Строка 29: | ||
К '''позиционным''' системам относятся: | К '''позиционным''' системам относятся: | ||
+ | |||
+ | 1) '''Двоичная система счисления''' — это позиционная система счисления с основанием 2. В этой системе счисления числа записываются с помощью двух символов (0 и 1). | ||
+ | |||
+ | |||
+ | '''История''' | ||
+ | |||
+ | - Индийский математик Пингала (200 год до н. э.) разработал математические основы для описания поэзии с использованием первого известного применения двоичной системы счисления. | ||
+ | |||
+ | - Наборы, представляющие собой комбинации двоичных цифр, использовались африканцами в традиционных гаданиях (таких как Ифа) наряду со средневековой геомантией. | ||
+ | |||
+ | - В 1605 году Френсис Бэкон описал систему, буквы алфавита которой могут быть сведены к последовательностям двоичных цифр, которые в свою очередь могут быть закодированы как едва заметные изменения шрифта в любых случайных текстах. Важным шагом в становлении общей теории двоичного кодирования является замечание о том, что указанный метод может быть использован применительно к любым объектам. | ||
+ | |||
+ | |||
+ | '''Правила перевода.''' | ||
+ | |||
+ | '''Из двоичной в восьмиричную:''' | ||
+ | |||
+ | Пусть требуется перевести двоичное число '''101011011001101101111001010110010112''' в восьмеричную систему счисления. Для этого следует разбить это двоичное число на триады, начиная с младшего бита (МБ). | ||
+ | Получим: | ||
+ | '''010 101 101 100 110 110 111 100 101 011 001 0112''' | ||
+ | Если старшая триада не заполнена до конца, следует дописать в ее старшие разряды нули, как в нашем случае. После этого необходимо заменить двоичные триады, начиная с младшей, на числа, равные им в восьмеричной системе: | ||
+ | 2 5 5 4 6 6 7 4 5 3 1 38. | ||
+ | |||
+ | Таким образом, | ||
+ | '''101011011001101101111001010110010112=2554667453138''' | ||
+ | |||
+ | '''Из двоичной в шестнадцатеричную:''' | ||
+ | |||
+ | При переводе чисел из двоичной системы счисления в шестнадцатеричную поступаем таким же образом, но разбиение двоичного числа производим на тетрады. Для примера будем использовать то же двоичное число, что и при переводе в восьмеричную систему счисления: | ||
+ | '''0101 0110 1100 1101 1011 1100 1010 1100 10112''' | ||
+ | |||
+ | Заменяя двоичные тетрады на их шестнадцатеричные значения, получим искомое шестнадцатеричное число: | ||
+ | '''101011011001101101111001010110010112=56CDBCACB16''' | ||
+ | |||
+ | '''Из двоичной в десятичную:''' | ||
+ | |||
+ | Чтобы перевести число из двоичной системы счисления в десятичную надо просуммировать числа, соответствующие двум в тех степенях, в которых в числе стоят единицы, например | ||
+ | |||
+ | '''110101''' это '''1*25+ 1*24+ 0*23+ 1*22+ 0*21+1*20= 32 + 16 + 4 + 1 = 53''' | ||
+ | Таким образом, '''110101 = 53'''. | ||
+ | |||
+ | '''Источники информации:''' | ||
+ | |||
+ | [http://vestikinc.narod.ru/AB/bin_oct_hex_tr.htm 1] | ||
+ | [http://ru.wikipedia.org/wiki/%C4%E2%EE%E8%F7%ED%E0%FF_%F1%E8%F1%F2%E5%EC%E0_%F1%F7%E8%F1%EB%E5%ED%E8%FF 2] | ||
+ | [http://de.ifmo.ru/bk_netra/page.php?tutindex=25&index=102 3] | ||
'''Задание:''' | '''Задание:''' |
Версия 19:24, 6 сентября 2011
Системы счисления бывают непозиционные и позиционные.
К непозиционным системам относятся системы счисления разных народов:
1. Древнеегипетская система счисления Древнеегипетская десятичная непозиционная система счисления возникла во второй половине третьего тысячелетия до н. э. Для обозначения чисел 0, 1, 10, 10², 10³, 104, 105, 106, 107 использовались специальные цифры. Числа в египетской системе счисления записывались как комбинации этих цифр, в которых каждая из цифр повторялась не более девяти раз. Значение числа равно простой сумме значений цифр, участвующих в его записи.
2. Система счисления майя Майя использовали 20-ричную систему счисления за одним исключением: во втором разряде было не 20, а 18 ступеней, то есть за числом (17)(19) сразу следовало число (1)(0)(0). Это было сделано для облегчения расчётов календарного цикла, поскольку (1)(0)(0) = 360 примерно равно числу дней в солнечном году. Для записи основными знаками были точки (единицы) и отрезки (пятёрки).
3.Римская система счисления Каноническим примером почти непозиционной системы счисления является римская, в которой в качестве цифр используются латинские буквы: I обозначает 1, V — 5, X — 10, L — 50, C — 100, D — 500, M — 1000 Например, II = 1 + 1 = 2 здесь символ I обозначает 1 независимо от места в числе. На самом деле, римская система не является полностью непозиционной, так как меньшая цифра, идущая перед большей, вычитается из неё, например: IV = 4, в то время как: VI = 6 Ссылка на источник:[1]
К позиционным системам относятся:
1) Двоичная система счисления — это позиционная система счисления с основанием 2. В этой системе счисления числа записываются с помощью двух символов (0 и 1).
История
- Индийский математик Пингала (200 год до н. э.) разработал математические основы для описания поэзии с использованием первого известного применения двоичной системы счисления.
- Наборы, представляющие собой комбинации двоичных цифр, использовались африканцами в традиционных гаданиях (таких как Ифа) наряду со средневековой геомантией.
- В 1605 году Френсис Бэкон описал систему, буквы алфавита которой могут быть сведены к последовательностям двоичных цифр, которые в свою очередь могут быть закодированы как едва заметные изменения шрифта в любых случайных текстах. Важным шагом в становлении общей теории двоичного кодирования является замечание о том, что указанный метод может быть использован применительно к любым объектам.
Правила перевода.
Из двоичной в восьмиричную:
Пусть требуется перевести двоичное число 101011011001101101111001010110010112 в восьмеричную систему счисления. Для этого следует разбить это двоичное число на триады, начиная с младшего бита (МБ). Получим: 010 101 101 100 110 110 111 100 101 011 001 0112 Если старшая триада не заполнена до конца, следует дописать в ее старшие разряды нули, как в нашем случае. После этого необходимо заменить двоичные триады, начиная с младшей, на числа, равные им в восьмеричной системе: 2 5 5 4 6 6 7 4 5 3 1 38.
Таким образом, 101011011001101101111001010110010112=2554667453138
Из двоичной в шестнадцатеричную:
При переводе чисел из двоичной системы счисления в шестнадцатеричную поступаем таким же образом, но разбиение двоичного числа производим на тетрады. Для примера будем использовать то же двоичное число, что и при переводе в восьмеричную систему счисления: 0101 0110 1100 1101 1011 1100 1010 1100 10112
Заменяя двоичные тетрады на их шестнадцатеричные значения, получим искомое шестнадцатеричное число: 101011011001101101111001010110010112=56CDBCACB16
Из двоичной в десятичную:
Чтобы перевести число из двоичной системы счисления в десятичную надо просуммировать числа, соответствующие двум в тех степенях, в которых в числе стоят единицы, например
110101 это 1*25+ 1*24+ 0*23+ 1*22+ 0*21+1*20= 32 + 16 + 4 + 1 = 53 Таким образом, 110101 = 53.
Источники информации:
Задание:
1. Каждый студент добавляет одно наименование системы счисления и пишет о нем небольшую вики-статью. В статье обязательно дать не менее 3 ссылок на Интернет-ресурсы, предоставившие информацию. В статье рассказать об истории возникновения данной системы счисления, правилах построения чисел, привести примеры записи различных чисел в выбранной системе счисления.
2. Для проверки знаний о системе счисления, составить небольшой тест при помощи сервиса http://master-test.net/.При создании теста предусмотреть вывод результатов тестирования и комментариев по неправильным ответам.
3. Каждому студенту необходимо пройти тестирование на знание всех систем счисления.