Система счисления Штерна-Броко

Материал из ТолВИКИ
(Различия между версиями)
Перейти к: навигация, поиск
Строка 11: Строка 11:
 
В каждом узле дерева Штерна — Броко (иногда также называемого деревом Фарея) стоит медианта [[Изображение:ь.jpg.png]] дробей [[Изображение:б.jpg.png]] и [[Изображение:ю.jpg.png]]стоящих в ближайших к этому узлу левом и правом верхних узлах. Начальный кусок дерева Штерна — Броко в этом случае выглядит так:
 
В каждом узле дерева Штерна — Броко (иногда также называемого деревом Фарея) стоит медианта [[Изображение:ь.jpg.png]] дробей [[Изображение:б.jpg.png]] и [[Изображение:ю.jpg.png]]стоящих в ближайших к этому узлу левом и правом верхних узлах. Начальный кусок дерева Штерна — Броко в этом случае выглядит так:
 
[[Изображение:юб.jpg.png]]
 
[[Изображение:юб.jpg.png]]
 +
 +
История
 +
 +
В книге Р. Грэхема, Д. Кнута, О. Паташника Конкретная математика открытие «дерева Штерна — Броко» связывается с именами Морица Штерна (1858) и Ахилла Броко (1860).
 +
Также была похожая система счисления была известна еще древнегреческим математикам и была построениа в форме «дерева ([http://ru.wikipedia.org/wiki/%D0%94%D0%B5%D1%80%D0%B5%D0%B2%D0%BE_%D0%9A%D0%B0%D0%BB%D0%BA%D0%B8%D0%BD%D0%B0_%E2%80%94_%D0%A3%D0%B8%D0%BB%D1%84%D0%B0 дерева Калкина-Уилфа]
  
 
----
 
----

Версия 10:50, 20 сентября 2011

Система счисления Штерна-Броко


Система счисления Штерна-Броко — способ записи положительных рациональных чисел, основанный на дереве Штерна-Броко.



Дерево Штерна — Броко — способ расположения всех неотрицательных несократимых дробей в вершинах упорядоченного бесконечного двоичного дерева.

В каждом узле дерева Штерна — Броко (иногда также называемого деревом Фарея) стоит медианта Ь.jpg.png дробей Б.jpg.png и Ю.jpg.pngстоящих в ближайших к этому узлу левом и правом верхних узлах. Начальный кусок дерева Штерна — Броко в этом случае выглядит так: Юб.jpg.png

История

В книге Р. Грэхема, Д. Кнута, О. Паташника Конкретная математика открытие «дерева Штерна — Броко» связывается с именами Морица Штерна (1858) и Ахилла Броко (1860). Также была похожая система счисления была известна еще древнегреческим математикам и была построениа в форме «дерева (дерева Калкина-Уилфа



Система счисления Штерна — Броко

Можно воспользоваться символами L и R для идентификации левой и правой ветви при продвижении вниз по дереву от корня, дроби 1/1, к некоторой определённой дроби. Тогда каждая положительная дробь получает единственное представление в виде строки состоящей из символов «R» и «L» (дроби 1/1 соответствует пустая строка). Такое представление положительных рациональных чисел назовём системой счисления Штерна — Броко. К примеру, обозначение LRRL соответствует дроби 5/7.

Личные инструменты
наши друзья
http://аудиохрестоматия.рф/