Семинар ДООМ "Старинные задачи"

Материал из ТолВИКИ
(Различия между версиями)
Перейти к: навигация, поиск
Строка 32: Строка 32:
  
  
''7.Задача на совместимую работу ( из "Всеобщей арифметики" И. Нвготона)''
+
''7.Задача на совместимую работу ( из "Всеобщей арифметики" И. Ньютона)''
  
 
Трое рабочих могут выполнить некоторую работу, при этом А может выполнить её один раз за 3 недели, В три раза за 8 недель, С пять раз за 12 недель. Спрашивается, в какое время смогут выполнить эту работу все вместе. ( В неделе 6 рабочих дней по 12 часов)
 
Трое рабочих могут выполнить некоторую работу, при этом А может выполнить её один раз за 3 недели, В три раза за 8 недель, С пять раз за 12 недель. Спрашивается, в какое время смогут выполнить эту работу все вместе. ( В неделе 6 рабочих дней по 12 часов)
  
 
[[Категория: Проект ДООМ - 2008-2009]]
 
[[Категория: Проект ДООМ - 2008-2009]]

Версия 19:04, 23 октября 2008

Участник Рыскалкина Наталья ВасильевнаID_279

Я считаю, что старинные, исторические задачи повышают интерес школьников к изучению математики, расширяют умственный кругозор и повышают общую культуру. Решая старинные задачи на уроке, параллельно даю исторический материал об авторе или персонаже задачи, что вызывает особый интерес у учащихся.

Предлагаю дидактический материал. Подборку старинных задач.

1.Задача на применение теоремы Пифагора (Арабский математик XI век) (Египетская задача)

На глубине 12 футов растёт лотос с 13-футовым стеблем. Определите, на какое расстояние цветок может отклониться от вертикали, проходящей через точку крепления стебля ко дну?


2.Задача на движение( из «Азбуки» Л.Н.Толстого)

Мужик вышел пешком из Тулы в Москву в 5 часов утра .В 12 часов выехал барин из Тулы в Москву. Мужик идет 5 верст в каждый час, а барин едет 11 верст в каждый час. На какой версте барин догонит мужика?

3.Задача на совместную работу

Бассейн ёмкостью 12 кубических единиц получает воду через две трубы, их которых одна даёт в каждый час куьическую единицу, а другая в каждый час - четыре кубические единицы. В какое время наполнится бассейн при совместном действии обеих труб?


4.Задача на смеси ( из "Арифметики" А.П. Киселёва)

30 вёдер вина в 48 градусов смешано с 24 вёдрами вина в 36 градусов. Сколько градусов смеси?

5.Задача на совместную работу из "Арифметики" Л.Ф. Магницкого)

Четыре человека хотят двор строить. Первый из них может построить в 1 год, второй млжет в 2 года, третий - в 3 года, а четвёртый - в 4 года. Спрашивается, в сколько годов они все вместе построят тот двор?

6. Старинная задача, Китай II век)

Дикая утка от южного моря до северного моря летит 7 дней. Дикий гусь от северного моря до южного моря летит 9 дней. Теперь дикая утка и дикий гусь вылетают одновременно. Через сколько дней они встретятся?


7.Задача на совместимую работу ( из "Всеобщей арифметики" И. Ньютона)

Трое рабочих могут выполнить некоторую работу, при этом А может выполнить её один раз за 3 недели, В три раза за 8 недель, С пять раз за 12 недель. Спрашивается, в какое время смогут выполнить эту работу все вместе. ( В неделе 6 рабочих дней по 12 часов)

Личные инструменты
наши друзья
http://аудиохрестоматия.рф/