Восьмеричная и шестнадцатеричная системы счислений

Материал из ТолВИКИ
Перейти к: навигация, поиск

Компьютерам очень удобно оперировать двоичными числами, но люди не привыкли работать с большим количеством цифр. Например, чтобы представить в двоичном виде число 1234 потребуется больше 10 двоичных цифр (10011010010). Поэтому были придуманы восьмеричная и шестнадцатеричная системы счислений. Они удобны как и десятичные числа тем, что для представления числа требуется меньшее количество разрядов. А по сравнению с десятичными числами, перевод в двоичное представление очень простой. Это как будто мы двоичное число разбили на группы по три или четыре разряда и каждой двоичной комбинации придумали значок.


Таблица для восьмеричных цифр:

Двоичная комбинация Значок
000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7



А вот таблица для шестнадцатеричных цифр:

Двоичная комбинация Значок
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F



Перевод произвести очень просто, посмотрим на примере числа 10011010010.

Разбиваем его на группы по три цифры: 010 011 010 010. И по таблице переводим: 23228.

Чтобы перевести число в шестнадцатеричное представление разбиваем двоичное число на группы по четыре цифры: 0100 1101 0010. И по таблице переводим: 4D216. С помощью калькулятора Windows мы можем убедиться, что всё проделано верно.

В программистских кругах шестнадцатеричные числа принято предварять значком 0x (например, 0x4D2), такое написание пошло от языка программирования C, либо значком $ (например, $4D2), такая нотация произошла от языка программирования Pascal. Иногда в литературе используют буквы «h» и «b» для обозначения соответственно шестнадцатеричных и двоичных чисел (например, FFh или 1011b).

наши друзья
http://аудиохрестоматия.рф/