Копилка знаменитых задач продолжение 5

Материал из ТолВИКИ
Перейти к: навигация, поиск

Посмотреть страницу Копилка знаменитых задач.


Задачи участников ДООМ


Bookworm ID 213 15:04, 29 октября 2008 (UZT) Задача № 24. Задача Л. Кэррола: Узелок 3: Задача 1. Два путешественника садятся на поезда, идущие в противоположных направлениях по одному и тому же замкнутому маршруту и отправляющихся в одно и то же время. Поезда отходят от станции отправления каждые 15 минут в обоих направлениях. Поезд, идущий на восток, возвращается через 3 часа, поезд, идущий на запад, - через 2. Сколько поездов встретит каждый из путешественников в пути (поезда, которые отбывают со станции отправления и прибывают на нее одновременно с поездом, которым следует путешественник, встречными не считаются)? Решение: С момента отправления до возвращения в исходный пункт у одних поездов проходит 180 минут, у других – 120. Возьмем наименьшее общее кратное 180 и 120 ( оно равно 360) и разделим весь маршрут на 360 частей ( будем называть каждую часть просто единицей). Тогда поезда, идущие в одном направлении, будут следовать со скоростью 2 единицы в минуту, а интервал между ними будет составлять 30 единиц. Поезда, идущие в другом направлении, будут следовать со скоростью в 3 единицы в минуту, а интервал между ними будет равен 45 единиц. В момент отправления восточного поезда расстояние между ним и первым встречным поездом составляет 45 единиц. Восточный поезд проходит 2/5 этого расстояния, встречный – остальные 3/5 после чего они встречаются в 18 единицах от станции отправления. Все последующие поезда восточный поезд встречает на расстоянии 18 единиц от места предыдущей встречи. В момент отправления западного поезда первый встречный поезд находится от него на расстоянии 30 единиц. Западный поезд проходит 3/5 этого расстояния, встречный – остальные 2/5, после чего они встречаются на расстоянии 18 единиц от станции отправления. Каждая последующая встреча западного поезда с восточным происходит на расстоянии 18 единиц от места предыдущей встречи. Следовательно, если вдоль всего замкнутого маршрута мы расставим 19 столбов, разделив его те самым на 20 частей по 18 единиц в каждой, то поезда будут встречаться у каждого столба. При этом в первом случае ( Задача 25) каждый путешественник, вернувшись на станцию отправления, пройдет мимо 19 столбов, а значит, встретит 19 поездов. Ответ: 19 поездов.

Задача №25. Задача Л. Кэррола: Узелок 3: Задача 2. Путешественники следуют по тому же маршруту, что и раньше(Задача №25), но начинают считать встречные поезда лишь с момента встречи их поездов. Сколько поездов встретятся каждому путешественнику? Решение: Во втором случае (Задача №26) путешественник, едущий на восток, начинает считать поезда лишь после того, как он проедет 2/5 всего пути, то есть доедет до восьмого столба, и таким образом успевает сосчитать лишь 12 столбов ( или, что то же самое, поездов). Его конкурент сосчитает лишь до 8. Встреча их поездов проходит в конце 2/5 от 3 часов, или 3/5 от 2 часов, то есть спустя 72 минуты после отправления. Ответ: путешественник, следующий встречным поездом, встретит 12 поездов, его напарник – 8.

Задача № 26. Задача Л. Кэррола: Узелок 4. Имеются 5 мешков. Первый и пятый мешки вместе весят 12 фунтов, второй и третий – 131/2 фунтов, третий и четвертый 111/2 фунтов, четвертый и пятый – 8 фунтов, первый, третий и пятый – 16 фунтов. Требуется узнать, сколько весит каждый мешок. Решение: Сумма результатов всех пяти взвешиваний равна 61 фунту, при этом вес третьего мешка входит в 61 фунт трижды, а вес всех остальных мешков лишь дважды. Вычитая из 61 фунта удвоенную сумму результатов первого и четвертого взвешиваний, получаем, что утроенный вес третьего мешка равен 21 фунту. Следовательно, третий мешок весит 7 фунтов. Из результатов второго и четвертого мешков: второй мешок весит 61/2 фунтов, четвертый - 41/2.Наконец, из результатов первого и четвертого взвешиваний получаем для первого и пятого мешков 51/2 фунтов 31/2 фунта. Ответ: 51/2 , 61/2, 7, 41/2 и 31/2 фунта.

Задача №27. Задача Л. Кэррола: Узелок 7. Стакан лимонада, 3 бутерброда и 7 бисквитов стоят 1 шиллинг 2 пенса. Стакан лимонада, 4 бутерброда и 10 бисквитов стоят 1 шиллинг 5 пенсов. Найти, сколько стоят: 1) стакан лимонада, бутерброд и бисквит; 2) 2 стакана лимонада, 3 бутерброда и 5 бисквитов. Решение: пусть x – стоимость (в пенсах) одного стакана лимонада, y – стоимость бутерброда и z – бисквита. Тогда по условию задачи, x + 3y + 7z = 14 и x + 4y +10z = 17 Требуется вычислить, чему равны x + y + z и 2x + 3y + 5z. Для этого вычтем первое уравнение из второго, исключив тем самым лимонад, получим y + 3z = 3. Подставляя y = 3 – 3z в первое уравнение, найдем: x – 2z = 5, или, что то же, x = 5 + 2z. Если теперь мы подставим выражения для у и х в те выражения, значения которых нам необходимо вычислить, то первое из них превратится в (5+2z) + (3 – 3z) + z = 8, а второе – в 2(5 + 2z) + 3(3 – 3z) + 5z = 19. Следовательно, стоимость первого набора составляет 8 пенсов, а второго – 1 шиллинг 7 пенсов. Ответ: 1) 8 пенсов; 2) 1 шиллинг 7 пенсов.

Задача № 28. Старинная задача: Имеет некто чай двух сортов – цейлонский по 5 гривен за фунт и индийский по 8 гривен за фунт. В каких долях надо смешать эти два сорта, чтобы получить чай стоимостью 6 гривен? Решение: Пусть х – цейлонского чая, у фунтов индийского чая. Составим уравнение: 5х+8у=6(х+у) Решив уравнение, получим: х=2у. Вывод: цейлонского чая взять 2 части, индийского 1 часть Ответ: 2/3 цейлонского чая, 1/3 индийского чая.

Задача № 29: Задача Л. Н. Толстого Карамель: по какой цене следует продавать смесь двух сортов карамели, если цена одного сорта - 100 рублей за килограмм, второго - 150 рублей за килограмм, а вес конфет одного сорта в три раза больше, чем другого? Решение: Пусть 3х кг - карамели одного сорта, тогда их общая стоимость 450х руб., а вес 4х кг. Продавать их следует по цене 450х/(4х) руб., то есть по 112 руб. 50 коп. за 1 кг. Ответ: смесь двух сортов карамели следует продавать по 112 руб. 50 коп. за 1 кг.

Задача № 30: Задача Л. Н. Толстого: На дне озера бьют ключи. Стадо из 183 слонов могло бы выпить его за один день, а стадо из 37 слонов за 5 дней. За сколько дней выпьет озеро 1 слон? Решение: Пусть V л - объем озера, С л воды в день слон выпивает, К л воды в день попадает в озеро из ключа. Тогда выполняются два равенства: 183С = V + К ; 37 · 5С = V + 5К . Откуда С = 2К ; V = 365К . Пусть один слон выпивает озеро за t дней. Тогда tС = V + tК , 2К t = 365К , откуда t = 365 . Ответ: Один слон выпьет озеро за 365 дней. --Bookworm ID 213 15:04, 29 октября 2008 (UZT)

Личные инструменты
наши друзья
http://аудиохрестоматия.рф/