Семинар ДООМ Практические приложения подобия треугольников
Содержание |
Дистанционный урок по математике
Автор: Сайфутдинова Елена Валерьевна Участник:Сайфутдинова Елена Валерьевна
Координатор команды Пифагорчики Участник:Пифагорчики ID 149
Уважаемые участники методического семинара, предлагаю Вашему вниманию разработку дистанционного урока по математике по теме «Практические приложения подобия треугольников», материалы которого могут быть использованы для проведения традиционных уроков в школе.
Преамбула
«Измерь самого себя – и ты станешь настоящим геометром!» – воскликнул средневековый философ Марсилио Сичино. Измерять самих себя мы не будем, а вот измерить высоту дерева, соседнего здания или какой-нибудь исторической достопримечательности, почему бы и нет?
Форма проведения
веб-форум
Продолжительность
2 дня
Требования к учащимся
Учащиеся должны знать:
- определение пропорциональных отрезков;
- определение подобных треугольников;
- определение подобных фигур;
- признаки подобия треугольников.
Учащиеся должны уметь:
применять данные понятия и признаки для решения простейших геометрических задач.
Аннотация урока
Подобие треугольников широко используется при решении самых разных прикладных задачах, а определения и формулировки свойств, теорем, которые получены самостоятельно экспериментальным путем, всегда запоминаются лучше и основательнее. В любой области знаний, а в геометрии особенно, очень важно смотреть и видеть, замечать различные особенности геометрических фигур, делать выводы из замеченных особенностей. Эти умения, которые вместе можно назвать «геометрическим зрением», необходимо постоянно тренировать и развивать. Кроме того, материал, связанный с подобием, позволяет увидеть и содержательно реализовать межпредметные связи с алгеброй (пропорциональность, уравнение), физикой (геометрическая оптика), историей (исторические справки о великих математиках древности).
Цели урока
Личностные:
- приобретение веры в себя, в свои потенциальные возможности;
- реализация творческих, креативных способностей личности.
Предметные:
- изучение понятия и свойства средней линии треугольника;
- развитие умений обобщать, абстрагировать и конкретизировать свойства изучаемых объектов и отношений, и применять их при решении практических задач;
- развитие геометрической зоркости.
Креативные:
- получение и обозначение новых геометрических объектов опытным путем;
- разработка и поиск новых методов решения известных задач.
Когнетивные:
- познание объектов окружающей реальности;
- изучение способов решения возникающих проблем;
- проведение практическо - исследовательской работы на местности.
Оргдеятельностные:
- овладение навыками самоорганизации учебной деятельности;
- организация коммуникаций для демонстрации и сравнения разработок учащихся по проблеме измерения расстояний до недоступной точки.
Программа
Учебный предмет и класс: Геометрия, 8-9класс.
Раздел/тема: Подобие треугольников/ Применение подобия треугольников к доказательству теорем и решению прикладных задач.
Основная цель: Развитие навыков решения прикладных задач по теме «Подобие треугольников».
Главная проблема урока: Можно ли, не используя специальных измерительных приборов, вычислить расстояние до недоступной точки?
Круг реальных объектов действительности, предлагаемых учащимся при изучении: Высота здания, высота дерева, радиус земного шара.
Этапы урока по минутам:
- Модуль 1, Задание 1 – повторение (30 мин)
- Задание 2, Модуль 2 – изучение нового материала (30 мин)
- Задание 3 – геометрический тренинг (5 мин)
- Задание 4, Модуль 3 – решение прикладных задач (60 мин)
- Задание 5, Модуль 4 – дополнительная прикладная задача (30 мин)
- Задание 6 – итоговый контроль (20 мин)
- Задание 7 – рефлексия (5 мин)