Восьмеричная и шестнадцатеричная системы счислений
Компьютерам очень удобно оперировать двоичными числами, но люди не привыкли работать с большим количеством цифр. Например, чтобы представить в двоичном виде число 1234 потребуется больше 10 двоичных цифр (10011010010). Поэтому были придуманы восьмеричная и шестнадцатеричная системы счислений. Они удобны как и десятичные числа тем, что для представления числа требуется меньшее количество разрядов. А по сравнению с десятичными числами, перевод в двоичное представление очень простой. Это как будто мы двоичное число разбили на группы по три или четыре разряда и каждой двоичной комбинации придумали значок.
Вот таблица для восьмеричных цифр:
|Значок |
---|
|0 |
|1 |
|2 |
|3 |
|4 |
|5 |
|6 |
|7 |
А вот таблица для шестнадцатеричных цифр:
Перевод произвести очень просто, посмотрим на примере числа 10011010010.
Разбиваем его на группы по три цифры: 010 011 010 010. И по таблице переводим: 23228.
Чтобы перевести число в шестнадцатеричное представление разбиваем двоичное число на группы по четыре цифры: 0100 1101 0010. И по таблице переводим: 4D216. С помощью калькулятора Windows мы можем убедиться, что всё проделано верно.
В программистских кругах шестнадцатеричные числа принято предварять значком 0x (например, 0x4D2), такое написание пошло от языка программирования C, либо значком $ (например, $4D2), такая нотация произошла от языка программирования Pascal. Иногда в литературе используют буквы «h» и «b» для обозначения соответственно шестнадцатеричных и двоичных чисел (например, FFh или 1011b).