Семинар ДООМ Конспект урока по теме "Объем куба"
5 класс
Автор: Ольга Владимировна Волкова
Тема: Объем куба.
Цель: образовательная - формирование умения находить объем кубов, его площадь поверхности, решать различные задачи с этими фигурами;
развивающая - дать представление об искусстве «Оригами»; развитие творческой фантазии;
воспитательная - воспитание волевых качеств, толерантного отношения друг к другу, аккуратности
Тип урока: интегрированный (математика и технология)
Оборудование: проектор, ноутбук, листы для каждого учащегося для практической работы, презентация «Объемы», листы для рефлексии.
Структура урока
- Организационный момент (2 мин)
- Проверка домашнего задания (5 мин)
- Практическая работа (9 мин)
- Физминутка (1 мин)
- Устная работа (5 мин)
- Решение задач (14 мин)
- Домашнее задание (2 мин)
- Итог урока (2 мин)
1-2. Организационный момент и проверка домашнего задания
Добрый день На уроках технологии вы научились делать различные фигурки-оригами. Сегодня у нас выставка ваших работ. Оцениваются все работы. Ученик рассказывает об оригами.
Слайд из презентации «История оригами»
Вам нужно было принести коробочки от подарков или спичечный или другой какой. Покажите их. Молодцы.
Ребята, на какую фигуру похожи они.
Ответ. Прямоугольный параллелепипед.
А что вы знаете про него?
Ответ. У него есть грани, ребра, вершины, длина, ширина, высота. А как найти объем этого прямоугольного параллелепипеда?
Ответ. Длину умножить на ширину и на высоту. Сколько получится?
Ответ. 30 см3
А на этом слайде разбросаны прямоугольные параллелепипеды. Каков объем каждого из них?
Ответы. Желтый – 112 м3, зеленый – 72 мм3, голубой – 350 см3, розовый – 1 см3, фиолетовый – 15000 мм3, красный – 1000 см3
Какая фигурка отличается от всех?
Ответ. Розовая.
Почему?
Ответ. У нее все величины одинаковы.
Как называются такие фигурки?
Ответ. Кубики, кубы.
Как найти объем куба?
Ответ. Умножить 3 раза на величину или длина ребра в кубе.
Как это записать, если сторону обозначить за а?
Ответ. V куба = а3
3. Практическая работа
Для изготовления куба нам понадобится упругая, легко сгибаемая бумага. У вас она лежит на парте. Будьте аккуратны при работе с бумагой, старайтесь все сгибы хорошо разгладить. Напомним условные обозначения:
Сначала на квадратном листе бумаги получили сеть сгибов, как показано на слайде 2, квадраты, отмеченные звездочками, – это грани куба.
слайд 2
Для выполнения задания обозначим “ущелья” – так называют сгибы, обращенные ребром вниз, – сплошной линией, а “хребты”, то есть сгибы, обращенные ребром вверх, – пунктиром. (слайд 3)
Обратите внимание на следующий слайд, на нем показано, как начинать складывать куб.
Слайд 4.
Учащиеся получают куб.
Работа в парах.
Покажите друг другу грани, ребра и вершина ваших кубиков. И определите их объем.
4.Физминутка
Упражнение «Деревянная кукла».
Кукла падает. Сначала кисти поднятых рук, затем до локтя, голова, кукла складывается в поясе и покачивается. Упражнение на релаксацию и визуализацию. Расслабленная поза, глубокое дыхание, тишина. Представьте лес, аромат лесной поляны, тихий шелест листвы и т.п.
5. Устная работа
Работа в группах.
Задание 1.
Посмотрите на слайд 5.
Определите объем каждой фигуры, сложенной из кубиков с ребром 1см. Выслушиваем ответы каждой группы. Сравниваем с правильным.
Слайд 5.
Задание 2.
На слайде 6 изображен куб.
• Назовите, какие ребра являются сторонами грани АМКВ?
• Какие вершины принадлежат задней грани?
• Какие ребра равны ребру АD?
• Какая грань равна грани АВСD?
Слайд 6
Выслушиваем ответы каждой группы. Сравниваем с правильным.
6. Решение задач.
Работа индивидуальная и в группах.
Решаем самостоятельно, затем ответы проговариваем друг другу.
- Из проволоки сделан каркас куба (слайд 6), длина ребра которого 23 см. Сколько понадобилось проволоки для этого каркаса?
- Найдите площадь этого куба, если длина ребра 23 см. Каркас надо обшить тканью, сколько понадобится ткани?
- Напишите формулу площади поверхности куба, если его ребро равно m?
Выслушиваем ответы каждой группы. Сравниваем с правильным.
7. Домашнее задание
Сколько понадобится краски, чтобы перекрасить поверхность вашего куба, если для покраски 16 см2 поверхности нужно 0,5 г краски? Поставьте перед собой свою модель куба и покрасьте в любой цвет. Попытайтесь нарисовать этот куб в тетради.
8. Итог урока и рефлексия
Отмечаются учащиеся, которые активно и успешно участвовали в изготовлении куба, в обсуждении решения задач.