Геометрический материал как средство развития пространственного мышления младших школьников

Материал из ТолВИКИ
Перейти к: навигация, поиск

Из опыта работы учителя начальных классов МБУ сш № 41 г.о. Тольятти Кожиной И.П.

Из опыта собственной работы могу сказать, что ребенок, не научившийся учиться, не овладевает примерами мыслительной деятельности в начальных классах школы, в средних обычно переходит в разряд неуспевающих. Математика способствует развитию у детей мышления, памяти, внимания, творческого воображения, наблюдательности, строгой последовательности, рассуждения и его доказательности; дает реальные предпосылки для дальнейшего развития наглядно-действенного и наглядно-образного мышления учеников.
Развитию данных психических процессов способствует изучение геометрического материала, связанного с алгебраическим и арифметическим материалом. Изучение геометрического материала обеспечивает числовую грамотность учащихся, дает им начальные геометрические представления, развивает наглядно-действенное и наглядно-образное мышление и пространственное воображение детей, формирует у них элементы конструкторского мышления и конструктивных умений.

Такое умение является необходимым условием социального бытия человека, формой отражения окружающего мира, условием успешного познания и активного преобразования действительности. Свободное оперирование пространственными образами является тем фундаментальным умением, которое объединяет разные виды учебной и трудовой деятельности. Оно рассматривается как одно из профессиональных важных качеств.

Основой интеллекта учащегося являются правильные базовые представления о соотношениях предметов в трехмерном пространстве. В последнее время этому вопросу стало уделяться значительно больше внимания, чем было раньше. Различные аспекты пространственного мышления при изучении математики исследовали А.М. Пышкало, Ю.В. Пухначев, М.И. Башмаков, С.Б. Вергенко, Г.Д. Глейзер, Г.Н. Никитина.

Необходима система заданий, которая способствовала бы ее формированию у учащихся начальной школы. Сейчас нужны новые подходы к формированию пространственного мышления учащихся, учитывая основные компоненты геометрических представлений, для чего лучше всего использовать метод конструирования. Обеспечению эффективных условий формирования пространственного мышления младших школьников на основе конструирования и посвящена моя работа.

Р.С. Немов говорит о том, что младший школьный возраст содержит в себе значительный потенциал умственного развития детей, но точно определить его не представляется возможным. Известный психолог Л.В. Выготский справедливо утверждал, что умственное развитие ребёнка состоит не столько в развитии отдельных процессов, сколько в развитии взаимосвязей между ними. Все исследователи младшего школьного возраста сходятся на том, что основная особенность ребёнка этой ступени обучения заключается не в том, что он в состоянии выполнять и достичь сегодня, а в потенциальных возможностях, которыми располагают дети этого возраста, в возможностях, которые лежат в зоне ближайшего развития младшего школьника. Поэтому Л.С. Выготский подчёркивал, что педагогика должна опираться не на вчерашний, а на завтрашний день детского развития. В своей педагогической работе учитель должен учитывать и слабость в развитии логической памяти младшего школьника и трудности, которые дети этого возраста испытывают в усвоении отвлечённого материала. Строить свою работу он должен с ориентацией не на эти слабые стороны психики ребёнка, а на то, что младший школьник обладает большими интеллектуальными возможностями, чем те, которые он обычно обнаруживает.

За четыре года учения в школе прогресс в умственном развитии детей бывает довольно заметным. От доминирования наглядно-действенного и элементарного образного мышления, до понятийного уровня развития и бедного логического размышления на уровне конкретных понятий.

Начало этого возраста связано, если пользоваться терминологией Ж.Пиаже и Л.С. Выготского, с доминированием операционного мышления, а конец – с преобладанием операционного мышления в понятиях. В этом же возрасте достаточно хорошо раскрываются общие и специальные способности детей, позволяющие судить об их одарённости.

Р.С. Немов отмечает, что комплексное развитие детского интеллекта в младшем школьном возрасте идёт в нескольких различных направлениях. Это усвоение и активное использование речи как средства мышления, соединение и взаимообогащающее влияние друг на друга всех видов мышления (наглядно-действенного, наглядно-образного и словесно-логического), выделение, обособление и относительно независимое развитие в интеллектуальном процессе двух фаз: подготовительной и исполнительной. На подготовительной фазе решения задачи осуществляется анализ её условий и вырабатывается план, а на исполнительной фазе этот план реализовывается практически. Полученный результат затем соотноситься с условиями и проблемой. Ко всему сказанному следует добавить умение рассуждать логически и пользоваться понятиями. При этом необходимо учитывать, что большинство научных понятий, которые осваивают младшие школьники, формируются не через восприятие предметов, а через общие представления о них. При освоении детьми понятий большую роль играет наглядность. Используя наглядность, учитель обучает умению подчинять мыслительную деятельность решению поставленной задачи, переключать течение мысли ребёнка, когда это нужно, с одной задачи на другую, с одного способа действия на другой. Это формирует гибкость, подвижность мышления школьников.

Прежде всего, следует уточнить термин «пространственное мышление», его содержательную и операциональную стороны. Базой для развития пространственного мышления, как уже сказано, являются пространственные представления, которые отражают соотношения и свойства реальных предметов, то есть свойства трехмерного видимого или воспринимаемого пространства. Пространственные представления – это образы памяти или образы воображения, в которых представлены по преимуществу пространственные характеристики объекта: форма, величина, взаимоположение составляющих его частей, расположение его на плоскости или в пространстве. Содержанием пространственного мышления является оперирование пространственными образами в видимом или воображаемом пространстве (на плоскости). Этим пространственное мышление отличается от других форм мышления, где выделение пространственных характеристик не является центральным моментом

По мнению И. С. Якиманской пространственное мышление структурно представлено двумя видами деятельности: созданием пространственного образа и преобразованием уже созданного образа в соответствии с поставленной задачей. При создании любого образа, в том числе и пространственного, мысленному преобразованию подвергается наглядная основа, на базе которой он возникает. В качестве реальной основы может выступать и реальный предмет, и его графическая (рисунок, чертеж, график и т.д.) или знаковая (математические или иные символы) модель. В любом случае при создании образов происходит перекодирование, сохраняющее не столько внешний вид, сколько контур объекта, его структуру и соотношение частей.
При оперировании образом мысленно видоизменяется уже созданный образ, нередко в условиях полного отвлечения от первоначальной формы. Преобразование пространственных образов может осуществляться одновременно в нескольких направлениях или в каком-то одном, но при этом снова происходит отвлечение от первоначального образа (образов) и уже без сохранения либо контуров, либо структуры, либо соотношения частей.

В зависимости от сложности выполняемых преобразований, И. С. Якиманская выделяет три типа оперирования пространственными образами:

1-й тип – преобразуется пространственное положение и не затрагивается структура образа (это различные перемещения);
2-й тип – преобразуется структура образа путем различных трансформаций (наложения, совмещения, перегруппировка составных частей, добавление или удаление элементов);
3-й тип – исходный образ преобразуется длительно и неоднократно, что приводит к изменению и структуры, и пространственного положения.

Эта классификация достаточно условна, так как операция, относящаяся ко 2-му типу, может одновременно привести к изменению образа в пространстве (а это уже 3-й тип) и тому подобное.

Еще до школы дети накапливают большое число представлений о форме, величине и взаимном расположении различных предметов на плоскости и в окружающем пространстве. Но так как опыт детей и накопление терминологии носят случайный и эпизодический характер, то осознанного понимания отношений между предметами, выражаемыми словами «одинаковые», «различные», «больший», «меньший», «справа», «слева», «между» и другими у детей до поступления в школу, как правило, нет. Восприятие пространства, осуществляемое в результате субъективного опыта ребенка на эмпирической основе, для младшего школьника осложнено тем, что пространственные признаки предметов сливаются с воспринимаемым содержанием, они не вычленяются как специальные отдельные объекты познания.

Слово, как ориентир, позволяет из совокупности признаков объекта выделить единичный: либо форму, либо размер, либо положение относительно других объектов. Однако ребенок затрудняется сам охарактеризовать тот или иной признак. При дифференциации пространственных признаков некоторые сложности возникают у детей младшего школьного возраста также с использованием понятия «размер», которое формируется у них, как правило, в основном при изучении величин: длины, площади, объема. В младшем школьном возрасте, особенно на начальном этапе обучения, основным показателем сформированности пространственных представлений является узнавание и дифференцирование пространственных признаков на основе перцептивной деятельности (деятельности по восприятию объекта). Оперативной единицей пространственного восприятия объекта является образ, который характеризуется не только и не столько пространственными признаками (форма и размер), но в большей степени пространственными отношениями, определяющими направление (вперед – назад, вверх – вниз), расстояние (далеко – близко), местоположение (высокий – низкий, короткий – длинный) и так далее.

Одна из психологических особенностей детей младшего школьного возраста - преобладание наглядно-образного мышления и именно на первых этапах обучения математике используется образ, как основная оперативная единица пространственных представлений младших школьников. Однако большие возможности для дальнейшего развития этого вида мышления, а также для наглядно-действенного мышления дает такая работа с геометрическим материалом на уроках математики, когда образ, в котором представлены пространственные признаки объекта, и слово соотносятся ребенком взаимно однозначно. В этом случае владение пространственными представлениями дает ребенку возможность оперировать ими не только на уровне узнавания и дифференциации объекта по пространственным признакам, но главное – на уровне мысленного воспроизведения образа объекта и изменения его положения в пространстве. Размещать и ориентировать объект в какой-либо системе отсчета, то есть понимать его положение среди совокупности других объектов.

«Именно такой подход к изучению геометрического материала делает его эффективным для развития детей», - считает Л. В. Занков. Формирование пространственных представлений у младших школьников способствует развитию восприятия, памяти, внимания, выработке у младших школьников математических понятий на основе содержательного обобщения, которое означает, что ребенок движется в учебном материале от частного к общему, от конкретного к абстрактному. Переход от наглядно-образного к наглядно-действенному мышлению требует сложной аналитико-синтетической работы, выделения деталей, сопоставления их друг с другом, что немыслимо без наличия у ребенка развитых пространственных представлений и пространственного воображения. В этом процессе большое значение принадлежит и речи, которая помогает назвать признак, сопоставить признаки. Только на основе развития наглядно-действенного и наглядно-образного мышления начинает формироваться в этом возрасте формально-логическое мышление, которое в совокупности с наглядно-образным и наглядно-действенным мышлением является основой умственного развития младшего школьника. При этом с помощью каждого из них, у ребенка лучше формируются те или иные качества ума.

Уроки математики в начальной школе играют в процессе обучения, очень существенную роль. Алгебраические аспекты этого предмета формируют в основном аналитико-синтетическое мышление, а геометрические способствуют развитию такого важного мышления, как пространственное. Основной единицей пространственного мышления является образ, в котором представлены пространственные характеристики объекта: форма, величина, взаиморасположение составляющих его элементов.

Формирование пространственных представлений не является прерогативой исключительно курса математики, поскольку образы, в которых фиксируется форма, величина, пространственное соотношение фигур в целом или их частей, выстраиваются в сознании ребёнка уже с самого раннего детства. Однако задачу формирования этого вида мышления традиционно относят к математическому образованию.

Формирование пространственного мышления ребёнка является важнейшей частью его интеллектуального развития в целом. Хорошее пространственное воображение необходимо и инженеру, и дизайнеру, и компьютерщику, и экономисту, и математику. Задача формировать определённый уровень пространственного мышления ребёнка до начала изучения стабильного курса математических дисциплин курсом математики начальных классов трудная, а порой не выполнимая. В дальнейшем же невысокий уровень пространственного мышления и пространственного воображения ученика обычно является для него практически непреодолимым препятствием для постижения курса стереометрии. Нельзя рассчитывать на то, что можно будет сформировать пространственное мышление у 15-летнего школьника, да ещё сделать это быстро. А возраст младшего школьника является в принципе наиболее благоприятным для развития пространственного мышления, поскольку наглядно-образный стиль мыслительной деятельности является в этот период ведущим, а, следовательно, этот возраст наиболее благоприятен для формирования как базовой, так и операционной стороны пространственного мышления.


ЛИТЕРАТУРА

  1. Ануфриев А. Ф., Костромина С.Н. Как преодолеть трудности в обучении детей. Психодиагностические таблицы. Психодиагностические методики. Коррекционные упражнения. 3-е изд., перераб. и доп./А. Ф. Ануфриев, С.Н. Костромина М.: Изд. «Ось-89», 2001. 272 с.
  2. Волкова С. Н. Задания развивающего характера в новом едином учебнике «Математика»./С.Н. Волкова //Начальная школа. - 1997 - №9 - с. 68
  3. Гаркавцева Т.Ю. Геометрический материал в 1 классе как средство развития пространственного мышления учащихся.// Журнал «Начальная школа». 2006 г. № 10,.
  4. Истомина Н.Б. Методика обучения математики в начальных классах./Н.Б.Истомина - //М.: Академия, 2001г.. Колягин Ю.М., Тарасова О.В. Наглядная геометрия и ее роль, и место, история возникновения./Ю.М.Колягин, О.В.Тарасова. //Начальная школа. - №4 - 2000г.
  5. Михайлова З.А. Игровые занимательные задачи для дошкольников». М., «Просвещение», 1990 г.
Личные инструменты
наши друзья
http://аудиохрестоматия.рф/