Семинар ДООМ. Устные занимательные задачи на движение.

Материал из ТолВИКИ
Перейти к: навигация, поиск

Участник:Москевич Лариса Вячеславовна, ID-224

Повышение интереса на уроках математики может достигаться следующим образом:

1) Обогащение содержания материалом по истории науки.

2) Решение задач повышенной трудности и нестандартных задач.

3) Подчеркивание силы и изящества методов вычислений, доказательств, преобразований и исследований.

4) Разнообразием уроков, нешаблонным их построением, включением в уроки элементов придающих каждому уроку своеобразный характер, использование Т.С.О., наглядных пособий, разнообразием устного счета.

5) Активизация познавательной деятельности учащихся на уроке с использованием форм самостоятельной и творческой работы.

6) Используя различные формы обратной связи: систематическим проведением опроса, кратковременных устных и письменных контрольных работ, различных тестов, математических диктантов наряду с контрольными работами предусмотренными планом.

7) Разнообразие домашнего задания.

8) Установление внутренних и меж предметных связей, показом и разъяснением применения математики в жизни и в производстве.

Большую роль для формирования интереса к изучению математики играет личность учителя, причем наиболее важной чертой в этом является его увлечённость предметом и преподаванием, желание учителя поверить в возможности ученика

Устная работа на уроках математики способствует развитию и формированию прочных вычислительных навыков и умений, она также играет немаловажную роль в привитии и повышении у детей познавательного интереса к урокам математики, как одного из важнейших мотивов учебно-познавательной деятельности, развития логического мышления, и развития личностных качеств ребенка. Вызывая интерес и прививая любовь к математике с помощью различных видов устных упражнений, учитель пробуждает у учеников стремление совершенствовать способы вычислений и решения задач, менее рациональные заменять более совершенными. А это - важнейшее условие сознательного усвоения материала.

"Инструментом для развития мышления, ведущего к формированию творческой деятельности школьника, являются занимательные задачи. Преподавание не бывает успешным, поскольку занимательность – необходимое средство возбуждать и поддерживать внимание". (Лобачевский)

Основу занимательности на уроках должны составлять задания оказывающие воздействие на мыслительную деятельность учащихся и непосредственно связанные с программным материалом.

Интерес к нестандартным задачам у учителя способствует развитию такого же интереса и у его учеников. Учитель и ученики извлекают интересные задачи отовсюду, решают, делятся друг с другом наиболее интересными, систематизируют.

В данной статье мне хотелось бы представить небольшую подборку занимательных задач на движение, которые можно использовать во время устной работы.

«Посвящается ходячим,

Бегающим,ползающим,

Прыгающим, летающим, плавающим –

Всем, кто не стоит на месте»

Задача №1

Два поезда: из города и из Простоквашина выехали навстречу друг другу со скоростями 55 км/ч и 60 км/ч соответственно. Какое расстояние было между ними за час до встречи, если расстояние между городом и Простоквашино 350 км?

Ответ: 115 км

Задача №2

Велосипедист проехал расстояние от села до города со скоростью 15 км/ч, а обратно – со скоростью 10 км/ч. Какова была средняя скорость велосипедиста?

Ответ: 12 км/ч

Задача №3

Том и Джерри соревновались в беге. Прыжок Джерри на 30% короче, чем прыжок Тома, но зато он успевает за то же время сделать на 30 % прыжков больше. Кто из них победит?

Ответ: Победит Том.

Задача №4 От моста одновременно поплыли пловец (против течения) и мячик (по течению). Через 30 минут пловец развернулся и поплыл назад за мячом. Он догнал мяч в 2-х км от моста. Какова скорость течения реки?

Ответ: 2 км.

Задача №5 Непослушный ребенок находится от отца на расстоянии 26 своих шагов. В то время как он делает 4 шага, отец успевает сделать 3. Но отец проходит за два своих шага столько же, сколько ребенок за три. Через сколько шагов отец догонит ребенка?

Ответ: через 156.

Задача №6

Поезд, на котором приезжает дядя Федор, приходит в 8 часов. Его встречает кот Матроскин на мотоцикле и отвозит домой. Однажды дядя Федор приехал в 7 часов и пошел пешком. Встретив Матроскина, он доехал на мотоцикле, прибыв на 20 минут раньше обычного. Когда встретились дядя Федор и Матроскин?

Анализ задачи.

Почему дядя Федор и кот Матроскин вернулись на 20 минут раньше обычного? Потому что кот Матроскин не доехал до платформы 10 мин. Следовательно, встреча произошла в 7 часов 50 минут.

Задача №7

Монах вышел в 8 часов утра из монастыря и за 12 часов поднялся на гору. На следующее утро в 9 часов он отправился той же дорогой в обратный путь и к 8 часам вечера попал в монастырь. Найдется ли на пути точка, в которой его часы показывали одинаковое время в первый и во второй день путешествия?

Решение.

Представим, что у нас 2 путешественника выходят одновременно из разных пунктов. Они движутся на встречу друг другу. Они обязательно встретятся в какой-то момент времени в какой-то точке. Значит, такая точка найдется.

Задача №8 Одновременно навстречу друг другу из пункта А выехали медведи на велосипеде, а из В – зайчики в трамвайчике. В это же время из А вылетели комарики на воздушном шарике. Долетев до зайчиков. Они повернули назад, долетели до медведей и снова повернули назад и т.д. Сколько км пролетят комарики до встречи медведей и зайчиков, если скорость зайчиков 7 км/ч, медведей 5 км/ч, комариков 10 км/ч, а расстояние от А до В равно 24 км?

Решение.

(24/(7+5))*10 = 20 (км)

Ответ. 20 км.

Задача №9

Автобусы отправляются с конечной остановки с интервалом в 1 минуту. Сколько встречных автобусов можно увидеть из окна, если доехать от одной конечной остановки до другой, считая встречные автобусы на конечных остановках?

Решение.

Автобусы встречаются с интервалом 0.5 минут. За 1 час получается 120 интервалов, а самих встреч 121.

Ответ. 121 встреча.

--Москевич Лариса Вячеславовна 13:12, 23 октября 2008 (SAMST)


Личные инструменты
наши друзья
http://аудиохрестоматия.рф/