Копилка знаменитых задач продолжение

Материал из ТолВИКИ
(Различия между версиями)
Перейти к: навигация, поиск
Строка 230: Строка 230:
  
 
Ответ: 36 учеников.
 
Ответ: 36 учеников.
 +
 +
<font color="red"> ЗВЕЗДА ID 248 </font>
 +
 +
ЗАДАЧИ РАЗНЫХ СТРАН
 +
 +
Задача №1
 +
 +
На вопрос о том, сколько времени, был дан такой ответ: «Две пятых времени, прошедшего от полуночи до этого момента, равно двум третьим времени, которое осталось до полудня». Сколько сейчас времени?
 +
 +
Решение
 +
От полуночи до полудня 12 часов, если t ч. — время, прошед¬шее от полуночи до настоящего времени, то:
 +
 +
<math> 2/3t=2/3(12-t)</math>
 +
 +
Следовательно, в данный момент t = 7,5 ч., т.е. часы показы¬вают 7 ч. 30 мин.
 +
Ответ: 7 ч. 30 мин.
 +
Задачи Франции
 +
 +
Чему равно наименьшее число, которое при делении на 2, 3, 4, 5, 6 дает в остатке 1, 2, 3, 4, 5 соответственно.
 +
 +
Решение:
 +
Пусть п - неизвестное число. Так как при делении п на 2 в остатке 1, значит, (п + 1) делится на 2 без остатка. Если п при делении на 3 дает в остатке 2, то число (п + 1) делится на 3 без остатка и т.д. Наименьшее кратное 2, 3, 4, 5, 6 равно 60. Сле¬довательно, п = 60 -1 = 59.
 +
 +
Ответ: 59.
 +
 +
'''Задача №3'''
 +
 +
Когда у старушки Леони спрашивают, сколько у нее кошек, она меланхолично отвечает: «Четыре пятых моих кошек плюс четыре пятых кошки». Сколько же у Леони кошек?
 +
 +
Решение:
 +
Пусть п - число кошек у Леони. Со слов старушки можем
 +
записать уравнение:
 +
 +
4 4
 +
— n + — = п
 +
5 5
 +
n  =  4
 +
 +
Ответ: 4 кошки.
 +
 +
'''Задачи Болгарии'''
 +
 +
'''Задача №4'''
 +
 +
Отец, по имени Николай, с сыном и отец, по имени Петр, с сы¬ном отправились удить рыбу. Число рыб, пойманных Николаем, оканчивается на 2, а число рыб, пойманных его сыном - на 3; число рыб, пойманных Петром, также оканчивается на 3, а число рыб, пойманных его сыном - на 4. Число рыб, пойманных на¬шими рыболовами вместе, совпадает с квадратом некоторого натурального числа. Как зовут сына Николая?
 +
Решение:
 +
Так как сумма последних цифр 2 + 3 + 3 + 4 = 12 оканчива¬ется на 2, и не существует квадрата натурального числа, который оканчивается на 2, то речь идет не о четырех, а лишь о трех ры¬баках, т.е. сын одного из любителей рыбной ловли одновременно является отцом другого (2 + 3 + 4 = 9). Николай не может быть
 +
 +
--[[Участник:ЗВЕЗДА ID 248|ЗВЕЗДА ID 248]]--[[Участник:ЗВЕЗДА ID 248|ЗВЕЗДА ID 248]] 16:55, 24 октября 2008 (SAMST)
  
  

Версия 15:55, 24 октября 2008

Посмотреть страницу Копилка знаменитых задач. Если вы увидите сообщение что количество опубликованных знаков превышает длину страницы, то вы можете разместить свои задачи на странице Копилка знаменитых задач продолжение 3



Задачи участников ДООМ

ЛАДА-ВЕКТОР

1. Задача индийского математика XII в. Бхаскары.

На берегу реки рос тополь одинокий. Вдруг порыв ветра его ствол надломил. Бедный тополь упал. И угол прямой с теченьем реки его ствол составлял. Запомни теперь, что в том месте река в четыре лишь фута была широка. Верхушка склонилась у края реки. Осталось три фута всего от ствола. Прошу тебя, скоро теперь мне скажи: У тополя как велика высота?

Решение:

Дано:

треугольник ACD – прямоугольный,

АС = 3 фута,

AD = 4 фута.

Найти: АВ.

Решение:

АВ = АС + СD; ВС = СD;

CD 2 = AC x2 + AD x2 (по теореме Пифагора),

CD x2 = 3 x2 + 4 x2, CD x2 = 25, CD = 5 (Ф);

АВ = 3+5 = 8 (Ф).

1 фут (1 Ф) ~ 30,5 см.

Ответ: 8 футов или ~ 244 см.

Файл:Индийская задача.JPGE

2.Решение древнекитайской задачи

В клетке находятся фазаны и кролики. Известно, что у них 35 голов и 94 ноги. Узнайте число фазанов и число кроликов.

Решение:

I способ Так решали в древнем Китае.

Представим, что наверх клетки, в которой сидят фазаны и кролики, мы положим морковь. Все кролики встанут на задние лапки, чтобы дотянуться до моркови!

1) Сколько ног в этот момент будет стоять на земле?

35 2=70 (ног).

2) Но в условии даны 94 ноги, где же остальные? Это передние лапы кроликов:

94 – 70= 24.

3) Сколько же кроликов?

24: 2 = 12.

4) Сколько фазанов?


35 – 12 = 23.

Ответ: 12 кроликов и 23 фазана.

II способ решения:

Пусть х – число фазанов, у – число кроликов. Всего у них 35 голов и 94 ноги. Значит,

х + у = 35


2х + 4у = 94. Умножим все члены уравнения на 2 и вычтем первое уравнение из второго.

2х + 2у = 70

2х + 4у = 94

2у = 24

у = 12

В клетке было 12 кроликов.

х = 35 – у

х = 23

Было 23 фазана.

Ответ: 23 фазана и 12 кроликов.

3. Задача на применение теоремы Пифагора (Арабский математик XI век)

На обоих берегах реки растет по пальме, одна против другой. Высота одной-30 локтей, другой -20 локтей; расстояние между их основаниями- 50 локтей. На верхушке каждой пальмы сидит птица. Внезапно обе птицы заметили рыбу, всплывшую к поверхности воды между пальмами; обе кинулись к ней разом и достигли её одновременно. На каком расстоянии от основания более высокой пальмы появилась рыба?

Решение:

Сделаем рисунок: Пифагор.JPG

Расстояние от основания более высокой пальмы до места появления рыбы, обозначим основания х. тогда расстояние до более низкой пальмы (50-х) локтей, т.к. известно расстояние между ними – 50 локтей.

Рассмотрим прямоугольные треугольники: ABC и KDC.

АВ= 30 локтей, КД= 20 локтей, АС= х локтей, КС=(50-х) локтей, ВС=ДС, т.к. птицы достигли рыбы одновременно.

Применяя теорему Пифагора.

АВ x2 +АС x2 = ВС x2 и КД x2 +КС x2 =ДС x2, т.к. ВС=ДС, то ВС x2 =КД x2 +КС; x2 30 x2 +х =20 x2 +(50-х) x2; 900+х x2 =400+2500-100х+х x2; х=20 Ответ: 20 локтей.

4.Задача на числа (Диофант, III в.)

Найдите 2 числа, зная, что их сумма равна 20, а произведение 96.

1 способ решения:

Первое число обозначим х, второе у и составим систему уравнений; т.к. сумма чисел равна 20, то: х + у = 20; произведение 96, то х у = 96, т.е

Используя т.Виета:

х = 12; у = 8 или х =18; у = 12.

Ответ: 8 и 12.

2 способ решения:

Первое число обозначим х, второе (20-х), т.к. сумма чисел равна 20. Зная их произведение, составим уравнение:

х (20-х) = 96; х -20х+ 96 = 0

Используя т.Виета:

х=8

х=12.

Ответ: 8 и 12.


5.Задача на дроби (Бхаскары; Индия,XII в.)

Из множества чистых цветков лотоса были принесены в жертвы: Шиве- 3 доля этого множества; Вишну-пятая и Солнца- шестая; четвертую долю получил Бхавани, а остальные шесть цветков получил уважаемый учитель. Сколько было цветков?


Решение:

Пусть всего цветов было х.

Шива получил третью долю из всего множества, т. е. 1х/4.

Зная, что ещё цветков получил уважаемый учитель, составим уравнение:

Дроби.JPG

Ответ: 120 цветков.


6.Задача на составление системы уравнений (Старинная задача).

Лошадь вместе с седлом стоит 235 рублей; лошадь же вместе со с рубей стоит 250 рублей; сбруя же с седлом стоит 135 рублей. Что стоит лошадь, что седло, что сбруя?

Решение:

Решим задачу с помощью системы уравнений. Пусть х

Возьмём за х рублей стоимость лошади, у рублей – сёдла, я рублей – сбруи. По условию:

x+y=235;

x+y=250;

y+z=135;

Вычитаем из первого уравнения второе:

x+y-x-z=235-250;

y=z-15;

Подставим полученное выражение в третье уравнение:

z-15+z=135;

z=75;

Найдём у:

у = z- 15=75-15=60;

Найдём х:

х + 60=235;

х=175.

Ответ: 175 рублей, 60 рублей, 75 рублей.

7.Вознаграждение воина.

Задача из «Полного курс чистой математики , сочиненный Артиллерии Штык-Юнкером и Математики партикулярным Учителем Ефимом Войтяховским в пользу и употребление юношества и упражняющихся в Математике» (1795г)

Служившему воину дано вознаграждение за первую рану 1 копейка, за другую -2 копейки, за третью – 4 копейки и т.д. По исчислению нашлось , что воин получил всего вознаграждения 655 руб. 35 коп. Спрашивается число его ран.

Задача воин.JPG

Индусская задача.JPG

--Лада-Вектор ID 279 15:40, 24 октября 2008 (SAMST)


--Сталкера задач ID 219 16:11, 24 октября 2008 (SAMST)

Задача 1. Вопросил некто некоего учителя: "Сколько имеешь учеников у себя,так как хочу отдать сына к тебе в училище". Учитель ответил: "Если ко мне придет учеников еще столько же, сколько имею, и полстолько, и четвертая часть, и твой сын, тогда будет у меня учеников 100." Сколько было у учителя учеников?

Решение:

2х+1/2*х+1/4*х+1=100, х=36

Ответ: 36 учеников.

ЗВЕЗДА ID 248

ЗАДАЧИ РАЗНЫХ СТРАН

Задача №1

На вопрос о том, сколько времени, был дан такой ответ: «Две пятых времени, прошедшего от полуночи до этого момента, равно двум третьим времени, которое осталось до полудня». Сколько сейчас времени?

Решение От полуночи до полудня 12 часов, если t ч. — время, прошед¬шее от полуночи до настоящего времени, то:

2 / 3t = 2 / 3(12 − t)

Следовательно, в данный момент t = 7,5 ч., т.е. часы показы¬вают 7 ч. 30 мин. Ответ: 7 ч. 30 мин. Задачи Франции

Чему равно наименьшее число, которое при делении на 2, 3, 4, 5, 6 дает в остатке 1, 2, 3, 4, 5 соответственно.

Решение: Пусть п - неизвестное число. Так как при делении п на 2 в остатке 1, значит, (п + 1) делится на 2 без остатка. Если п при делении на 3 дает в остатке 2, то число (п + 1) делится на 3 без остатка и т.д. Наименьшее кратное 2, 3, 4, 5, 6 равно 60. Сле¬довательно, п = 60 -1 = 59.

Ответ: 59.

Задача №3

Когда у старушки Леони спрашивают, сколько у нее кошек, она меланхолично отвечает: «Четыре пятых моих кошек плюс четыре пятых кошки». Сколько же у Леони кошек?

Решение: Пусть п - число кошек у Леони. Со слов старушки можем записать уравнение:

4 4 — n + — = п 5 5 n = 4

Ответ: 4 кошки.

Задачи Болгарии

Задача №4

Отец, по имени Николай, с сыном и отец, по имени Петр, с сы¬ном отправились удить рыбу. Число рыб, пойманных Николаем, оканчивается на 2, а число рыб, пойманных его сыном - на 3; число рыб, пойманных Петром, также оканчивается на 3, а число рыб, пойманных его сыном - на 4. Число рыб, пойманных на¬шими рыболовами вместе, совпадает с квадратом некоторого натурального числа. Как зовут сына Николая? Решение: Так как сумма последних цифр 2 + 3 + 3 + 4 = 12 оканчива¬ется на 2, и не существует квадрата натурального числа, который оканчивается на 2, то речь идет не о четырех, а лишь о трех ры¬баках, т.е. сын одного из любителей рыбной ловли одновременно является отцом другого (2 + 3 + 4 = 9). Николай не может быть

--ЗВЕЗДА ID 248--ЗВЕЗДА ID 248 16:55, 24 октября 2008 (SAMST)

Личные инструменты
наши друзья
http://аудиохрестоматия.рф/